In cooperation with the Iranian Nuclear Society

Study on the Effective Parameters for Increasing the Life Time and Efficiency of UO2 Fuel Pellets

Document Type : Research Paper

Authors

Abstract
Nuclear fission of uranium atoms starts when a nuclear pellet is placed into the rod and then inside the nuclear reactor. Thus, the number of the produced atoms would be more than those of fission uranium atoms. No problem exists with solid products, but the gas products following the swelling of the pellets enter the gap between the pellet and rod. This causes destruction of the rod and the reactor safety reduction. It is better to exit the rod from the reactor before the event. Attempts are made to increase the life time and the generated energy with nuclear pellets to achieve higher efficiency. For this purpose, after the identification of the obstacles, the efficiency of the nuclear fuel pellets is increased by some modifications. This work is a review of the world activities to identify the obstacles and solutions provided for modifying the nuclear fuel pellets. The results demonstrate that the most important features of a nuclear fuel influence on the life time and efficiency of UO2 feul pellets are the largeness of grains along with intergranular porosities with controlled size, good creep and thermal conductivity properties.
 

Keywords


[1] J. Spino, J. Rest, W. Goll, C.T. Walker, Matrix swelling rate and cavity volume balance of UO2 fuels at high burn-up, J. of Nucl. Mater., 346 (2005) 131–144.
 
[2] J.Y. Colle, J.P. Hiernaut, D. Papaioannou, C. Ronchi, A. Sasahara, Fission product release in high-burn-up UO2 oxidized to U3O8, J. of Nucl. Mater., 348 (2006) 229–242.
 
[3] N.A. Kudryashov, A.V. Khlunov, M.A. Chmykhov, Thermal regimes of high burn-up nuclear fuel rod, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010) 1240–1252.
 
[4] M. Teague, M. Tonks, S. Novascone, S. Hayes, Microstructural modeling of thermal conductivity of high burn-up mixed oxide fuel, J. of Nucl. Mater., 444 (2014) 161–169.
 
[5] F.B. Tas, S. Ergun, Effects of pellet-to-cladding gap design parameters on the reliability of high burn-up PWR fuel rods under steady state and transient conditions, Energy Conversion and Management, 72 (2013) 88–93.
 
[6] S.C. Middleburgh, R.W. Grimes, K.H. Desai, P.R. Blair, L. Hallstadius, K. Backman, P. Van Uffelen, Swelling due to fission products and additives dissolved within the uranium dioxide lattice, J. of Nucl. Mater., 427 (2012) 359–363.
 
[7] A.R. Massih, L.O. Jernkvist, Effect of additives on self-diffusion and creep of UO2, Computat. Mater. Sci., 110 (2015) 152–162.
 
[8] B. Cox, Pellet-clad interaction (PCI) failures of zirconium alloy fuel cladding-a review, J. Nucl. Mater., 172 (1990) 249–292.
 
[9] NEA-OECD, Pellet-Clad Interaction in Water Reactor Fuels, NEA No. 6004, Organization for Economic Cooperation and Development, Paris, 2005, Seminar Proceedings, Aix-en-Provence, France, (9-11 March 2004).
 
[10] S. Doi, Improvement of fuel pellet for high burn-up, IAEA-TCM' fuel performance at high burn-up for WRs, Studsvik, Suedia (1990).
 
 
 
[11] I. Harada, S. Doi, S. Abeta, K. Yamata, Behaviour of large grain UO2 pellet by new ADU powder, proc. IAEA Tech. Com. Meeton water reactor fuel element modeling at high burn-up and its experimental support, Bownesson Windermere, UK (1994).
 
[12] F. Garzarolli, R. Holzer, Water side corrosion performance of light water power reactor fuel, Nucl. Energy, 31 (1992) 65-86.
 
[13] G.R. Kilp, Corrosion experience with zircaloy and ZIRLO™ In operating PWRS, proc. ANS/ENST opical meeting on LWR fuel performance, avignon, France (1991) 730-741.
 
[14] I. Antoniou, V.V. Ivanov, B.F. Kostenko, J. Spino, A.D. Stalios, Fractal analysis of high burn-up structures in UO2, Chaos, Solitons and Fractals 19 (2004) 731–737.
 
[15] C.T. Walker, T. Kameyama, S. Kitajima, M. Kinoshita, Concerning the microstructure changes that occur at the surface of UO2 pellets on irradiation to high burn-up, J. of Nucl. Mater., 188 (1992) 73-79.
 
[16] M.E. Cunningham, M.D. Freshley, D.D. Lanning, Development and characteristics of the rim region in high burn-up UO2 fuel pellets, J. of Nucl. Mater., 188 (1992) 19-27.
 
[17] Chubb, Nuclear fuel pellet design to minimize dimensional changes, United State Patent NO.4, 094, 738, France (1978).
 
[18] S. Caruso, Characterisation of high-burn up LWR fuel rods through gamma tomography, Doctoral THÈSE NO 3762, France, (2007).
 
[19] V.V. Rondinella, T. Wiss, The high burn-up structure in nuclear fuel, materials today, 13 [12] (2010) 24-32.
 
[20] P. Fors, P. Carbol, S. Van Winckel, K. Spahiu, Corrosion of high burn-up structured UO2 fuel in presence of dissolved H2, J. of Nucl. Mater., 394 (2009) 1–8.
 
[21] J. Rest, Derivation of analytical expressions for the network dislocation density, change in lattice parameter, and for the recrystallized grain size in nuclear fuels, J. Nucl. Mater., 349 (2006) 150-159.
[22] P. Blair, Modelling of fission gas behavior in high burn-up nuclear fuel, Thése No 4084, Programme Doctoral en Energie École Polytechnique Fédérale De Lausanne Pour Lʼobtention Du Grade De Docteur És Sciences, Suisse (2008) 160.
 
[23] J. Noirot, L. Desgranges, J. Lamontagne, Detailed characterisations of high burn-up structures in oxide fuels, J. of Nucl. Mater., 372 (2008) 318–339.
 
[24] C. Jegou, M. Gennisson, S. Peuget, L. Desgranges, G. Guimbretière, M. Magnin, Z. Talip, P. Simon, Raman micro-spectroscopy of UOX and MOX spent nuclear fuel characterization and oxidation resistance of the high burn-up structure, J. of Nucl. Mater., 458 (2015) 343–349.
 
[25] J. Cobos, D. Papaioannou, J. Spino, M. Coquerelle, Phase characterisation of simulated high burn-up UO fuel, J. of Alloys and Compounds, 271–273 (1998) 610–615.
 
[26] J. Spino, D. Papaioannou, Lattice parameter changes associated with the rim-structure formation in high burn-up UO2 fuels by micro X-ray diffraction, J. of Nucl. Mater., 281 (2000) 146-162.
 
[27] C.T. Walker, V.V. Rondinella, D. Papaioannou, S.V. Winckel, W. Goll, R. Manzel, On the oxidation state of UO2 nuclear fuel at a burn-up of around 100 MWd/kgHM, J. of Nucl. Mater., 345 (2005) 192–205.
 
[28] C.T. Walker, D. Staicu, M. Sheindlin, D. Papaioannou, W. Goll, F. Sontheimer, On the thermal conductivity of UO2 nuclear fuel at a high burn-up of around 100 MWd/kgHM, J. of Nucl. Mater., 350 (2006) 19–39.
 
[29] M.S. Veshchunov, V.E. Shestak, Model for evolution of crystal defects in UO2 under irradiation up to high burn-ups, J. of Nucl. Mater., 384 (2009) 12–18.
 
[30] M. Salvoa, J. Sercombe, J.C. Ménard, J. Julien, T. Helfer, T. Désoyer, Experimental characterization and modelling of UO2 behavior at high temperatures and high strain rates, J. of Nucl. Mater., 456 (2015) 54–67.
 
[31] B. Michel, J. Sercombe, G. Thouvenin, A new phenomenological criterion for pellet–cladding interaction rupture, Nuclear Engineering and Design 238 (2008) 1612–1628.
[32] D. Ohai, Technologies for manufacturing UO2 sintered pellets to fuel burn-up extension, Institute for Nuclear Research, Pitesti, Romania, 193-209.
 
[33] K. Une, I. Tanabe, M. Oguma, Effects of additives and the oxygen potential on the fission gas diffusion in UO2 fuel, J. of Nucl. Mater., 150 (1987) 93-99.
 
[34] S. Valin, L. Caillot, Ph. Dehaudt, Y. Guerin, A. Mocellin, C. Delafoy, A. Chotard, Synthesis of the results obtained on the advanced UO2 microstructures irradiated in the Tanox device, advanced fuel pellet materials and designs for water cooled reactors, proceedings of a technical committee meeting held in Brussels, 20–24 (2003) 175-186.
 
[35] J.H. Yang, K.S. Kim, I.H. Nam, J.S. Oh, D.J. Kim, Y.W. Rhee, J.H. Kim, Effect of step wise variation of oxygen potential during the isothermal sintering on the grain growth behavior in Cr2O3 doped UO2 pellets, J. of Nucl. Mater., 429 (2012) 25–33.
 
[36] Y.C. Cho, Dependence on Sintering Atmosphere and Cr2O3 Additive of the Behavior of Grain Growth and Densification of Uranium Dioxide, MS. Thesis, Chungnam National University, Korea (2005).
 
[37] C. Delafoy, P. Dewes, T. Miles, A. NP, Cr2O3-doped fuel development for BWRs, in: Proceedings of International LWR Fuel Performance Meeting, San Francisco, USA, (2007) 1071.
 
[38] C. Delafoy, P. Blanpain, S. Lansiart, P. Dehaudt, G. Chiarelli, R. Castelli, Advanced PWR fuels for high burn-up extension and PCI constrainet elimination, Advanced fuel pellet materials and designs for water cooled reactors, Proceedings of a technical committee meeting held in Brussels, 20–24 (2003) 163-173.
 
[39] P.T. Sawbridge, C. Baker, The irradiation performance of magnesia-doped UO2 fuel, J. Nucl. Mater., 95 (1980) 119-128.
 
[40] J. Hastings, Effect of initial grain size on fission gas release from irradiated UO2 fuel, Commun. of the Am. Ceram. Soc., (1983) C150-151.
 
[41] G. Rossiter, M. Mignanelli, A report prepared for and on behalf of the Nuclear Decommissioning Authority (NDA), The characteristics of LWR fuel at high burn-up and their relevance to AGR spent fuel, NNL (10) 10930, 2, (2011).
 
[42] J. Nakamura, Thermal diffusivity of high burn-up UO2 pellet irradiated at HBWR, Proceedings of the Seminar on thermal performance of high burn-up LWR fuel, Commissariat à l’Énergie Atomique (CEA) Cadarache, France, (3-6 March 1998) 43-55.
 
[43] S.M. McDeavitt, J. Ragusa, S.T. Revankar, A.A. Solomon, J. Malone, A high-conductivity oxide fuel concept, American Beryllia INC. 15 (2011).
 
[44] F. Dherbey, F. Louchet, A. Mocelling, S. Leclercq, Elevated temperature creep of polycrystalline uranium dioxide: from microscopic mechanisms to macroscopic behaviour, Acta Materialia, 50 (2002) 1495–1505.
 
[45] F. Saiter, S. Leclercq, Modeling of the non-monotonous viscoplastic behavior of uranium dioxide, J. of Nucl. Mater., 322 (2003) 1–14.
 
[46] N. Marchal, C. Campos, C. Garnier, Finite element simulation of Pellet-Cladding Interaction (PCI) in nuclear fuel rods, Computat. Mater. Sci., 45 (2009) 821–826.
 
[47] L. Bourgeois, P. Dehaudt, C. Lemaignan, A. Hammou, Factors governing microstructure development of Cr2O3-doped UO2 during sintering, J. Nucl. Mater., 297 (2001) 313–326.
 
[48] J. Arborelius, K. Backman, L. Hallstadius, M. Limback, J. Nilsson, B. Rebensdorff, G. Zhou, K. Kitano, R. Lofstrom, G. Ronnberg, advanced doped UO2 pellets in LWR applications, J. of Nucl. Sci. & Techn., 43 (2006) 967–976.
 
[49] C. Nonon, J.C. Menard, S. Lansiart, J. Noirot, S. Martin, G.M. Decroix, O. Rabouille, C. Delafoy, B. Petitprez, PCI behavior of chromium oxide doped fuel, in: Proceedings of the International Seminar on PCI with Water Reactor Fuel, Aixen-Provence, France, (2004) 305-319.