[1] J. Spino, J. Rest, W. Goll, C.T. Walker, Matrix swelling rate and cavity volume balance of UO2 fuels at high burn-up, J. of Nucl. Mater., 346 (2005) 131–144.
[2] J.Y. Colle, J.P. Hiernaut, D. Papaioannou, C. Ronchi, A. Sasahara, Fission product release in high-burn-up UO2 oxidized to U3O8, J. of Nucl. Mater., 348 (2006) 229–242.
[3] N.A. Kudryashov, A.V. Khlunov, M.A. Chmykhov, Thermal regimes of high burn-up nuclear fuel rod, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010) 1240–1252.
[4] M. Teague, M. Tonks, S. Novascone, S. Hayes, Microstructural modeling of thermal conductivity of high burn-up mixed oxide fuel, J. of Nucl. Mater., 444 (2014) 161–169.
[5] F.B. Tas, S. Ergun, Effects of pellet-to-cladding gap design parameters on the reliability of high burn-up PWR fuel rods under steady state and transient conditions, Energy Conversion and Management, 72 (2013) 88–93.
[6] S.C. Middleburgh, R.W. Grimes, K.H. Desai, P.R. Blair, L. Hallstadius, K. Backman, P. Van Uffelen, Swelling due to fission products and additives dissolved within the uranium dioxide lattice, J. of Nucl. Mater., 427 (2012) 359–363.
[7] A.R. Massih, L.O. Jernkvist, Effect of additives on self-diffusion and creep of UO2, Computat. Mater. Sci., 110 (2015) 152–162.
[8] B. Cox, Pellet-clad interaction (PCI) failures of zirconium alloy fuel cladding-a review, J. Nucl. Mater., 172 (1990) 249–292.
[9] NEA-OECD, Pellet-Clad Interaction in Water Reactor Fuels, NEA No. 6004, Organization for Economic Cooperation and Development, Paris, 2005, Seminar Proceedings, Aix-en-Provence, France, (9-11 March 2004).
[10] S. Doi, Improvement of fuel pellet for high burn-up, IAEA-TCM' fuel performance at high burn-up for WRs, Studsvik, Suedia (1990).
[11] I. Harada, S. Doi, S. Abeta, K. Yamata, Behaviour of large grain UO2 pellet by new ADU powder, proc. IAEA Tech. Com. Meeton water reactor fuel element modeling at high burn-up and its experimental support, Bownesson Windermere, UK (1994).
[12] F. Garzarolli, R. Holzer, Water side corrosion performance of light water power reactor fuel, Nucl. Energy, 31 (1992) 65-86.
[13] G.R. Kilp, Corrosion experience with zircaloy and ZIRLO™ In operating PWRS, proc. ANS/ENST opical meeting on LWR fuel performance, avignon, France (1991) 730-741.
[14] I. Antoniou, V.V. Ivanov, B.F. Kostenko, J. Spino, A.D. Stalios, Fractal analysis of high burn-up structures in UO2, Chaos, Solitons and Fractals 19 (2004) 731–737.
[15] C.T. Walker, T. Kameyama, S. Kitajima, M. Kinoshita, Concerning the microstructure changes that occur at the surface of UO2 pellets on irradiation to high burn-up, J. of Nucl. Mater., 188 (1992) 73-79.
[16] M.E. Cunningham, M.D. Freshley, D.D. Lanning, Development and characteristics of the rim region in high burn-up UO2 fuel pellets, J. of Nucl. Mater., 188 (1992) 19-27.
[17] Chubb, Nuclear fuel pellet design to minimize dimensional changes, United State Patent NO.4, 094, 738, France (1978).
[18] S. Caruso, Characterisation of high-burn up LWR fuel rods through gamma tomography, Doctoral THÈSE NO 3762, France, (2007).
[19] V.V. Rondinella, T. Wiss, The high burn-up structure in nuclear fuel, materials today, 13 [12] (2010) 24-32.
[20] P. Fors, P. Carbol, S. Van Winckel, K. Spahiu, Corrosion of high burn-up structured UO2 fuel in presence of dissolved H2, J. of Nucl. Mater., 394 (2009) 1–8.
[21] J. Rest, Derivation of analytical expressions for the network dislocation density, change in lattice parameter, and for the recrystallized grain size in nuclear fuels, J. Nucl. Mater., 349 (2006) 150-159.
[22] P. Blair, Modelling of fission gas behavior in high burn-up nuclear fuel, Thése No 4084, Programme Doctoral en Energie École Polytechnique Fédérale De Lausanne Pour Lʼobtention Du Grade De Docteur És Sciences, Suisse (2008) 160.
[23] J. Noirot, L. Desgranges, J. Lamontagne, Detailed characterisations of high burn-up structures in oxide fuels, J. of Nucl. Mater., 372 (2008) 318–339.
[24] C. Jegou, M. Gennisson, S. Peuget, L. Desgranges, G. Guimbretière, M. Magnin, Z. Talip, P. Simon, Raman micro-spectroscopy of UOX and MOX spent nuclear fuel characterization and oxidation resistance of the high burn-up structure, J. of Nucl. Mater., 458 (2015) 343–349.
[25] J. Cobos, D. Papaioannou, J. Spino, M. Coquerelle, Phase characterisation of simulated high burn-up UO fuel, J. of Alloys and Compounds, 271–273 (1998) 610–615.
[26] J. Spino, D. Papaioannou, Lattice parameter changes associated with the rim-structure formation in high burn-up UO2 fuels by micro X-ray diffraction, J. of Nucl. Mater., 281 (2000) 146-162.
[27] C.T. Walker, V.V. Rondinella, D. Papaioannou, S.V. Winckel, W. Goll, R. Manzel, On the oxidation state of UO2 nuclear fuel at a burn-up of around 100 MWd/kgHM, J. of Nucl. Mater., 345 (2005) 192–205.
[28] C.T. Walker, D. Staicu, M. Sheindlin, D. Papaioannou, W. Goll, F. Sontheimer, On the thermal conductivity of UO2 nuclear fuel at a high burn-up of around 100 MWd/kgHM, J. of Nucl. Mater., 350 (2006) 19–39.
[29] M.S. Veshchunov, V.E. Shestak, Model for evolution of crystal defects in UO2 under irradiation up to high burn-ups, J. of Nucl. Mater., 384 (2009) 12–18.
[30] M. Salvoa, J. Sercombe, J.C. Ménard, J. Julien, T. Helfer, T. Désoyer, Experimental characterization and modelling of UO2 behavior at high temperatures and high strain rates, J. of Nucl. Mater., 456 (2015) 54–67.
[31] B. Michel, J. Sercombe, G. Thouvenin, A new phenomenological criterion for pellet–cladding interaction rupture, Nuclear Engineering and Design 238 (2008) 1612–1628.
[32] D. Ohai, Technologies for manufacturing UO2 sintered pellets to fuel burn-up extension, Institute for Nuclear Research, Pitesti, Romania, 193-209.
[33] K. Une, I. Tanabe, M. Oguma, Effects of additives and the oxygen potential on the fission gas diffusion in UO2 fuel, J. of Nucl. Mater., 150 (1987) 93-99.
[34] S. Valin, L. Caillot, Ph. Dehaudt, Y. Guerin, A. Mocellin, C. Delafoy, A. Chotard, Synthesis of the results obtained on the advanced UO2 microstructures irradiated in the Tanox device, advanced fuel pellet materials and designs for water cooled reactors, proceedings of a technical committee meeting held in Brussels, 20–24 (2003) 175-186.
[35] J.H. Yang, K.S. Kim, I.H. Nam, J.S. Oh, D.J. Kim, Y.W. Rhee, J.H. Kim, Effect of step wise variation of oxygen potential during the isothermal sintering on the grain growth behavior in Cr2O3 doped UO2 pellets, J. of Nucl. Mater., 429 (2012) 25–33.
[36] Y.C. Cho, Dependence on Sintering Atmosphere and Cr2O3 Additive of the Behavior of Grain Growth and Densification of Uranium Dioxide, MS. Thesis, Chungnam National University, Korea (2005).
[37] C. Delafoy, P. Dewes, T. Miles, A. NP, Cr2O3-doped fuel development for BWRs, in: Proceedings of International LWR Fuel Performance Meeting, San Francisco, USA, (2007) 1071.
[38] C. Delafoy, P. Blanpain, S. Lansiart, P. Dehaudt, G. Chiarelli, R. Castelli, Advanced PWR fuels for high burn-up extension and PCI constrainet elimination, Advanced fuel pellet materials and designs for water cooled reactors, Proceedings of a technical committee meeting held in Brussels, 20–24 (2003) 163-173.
[39] P.T. Sawbridge, C. Baker, The irradiation performance of magnesia-doped UO2 fuel, J. Nucl. Mater., 95 (1980) 119-128.
[40] J. Hastings, Effect of initial grain size on fission gas release from irradiated UO2 fuel, Commun. of the Am. Ceram. Soc., (1983) C150-151.
[41] G. Rossiter, M. Mignanelli, A report prepared for and on behalf of the Nuclear Decommissioning Authority (NDA), The characteristics of LWR fuel at high burn-up and their relevance to AGR spent fuel, NNL (10) 10930, 2, (2011).
[42] J. Nakamura, Thermal diffusivity of high burn-up UO2 pellet irradiated at HBWR, Proceedings of the Seminar on thermal performance of high burn-up LWR fuel, Commissariat à l’Énergie Atomique (CEA) Cadarache, France, (3-6 March 1998) 43-55.
[43] S.M. McDeavitt, J. Ragusa, S.T. Revankar, A.A. Solomon, J. Malone, A high-conductivity oxide fuel concept, American Beryllia INC. 15 (2011).
[44] F. Dherbey, F. Louchet, A. Mocelling, S. Leclercq, Elevated temperature creep of polycrystalline uranium dioxide: from microscopic mechanisms to macroscopic behaviour, Acta Materialia, 50 (2002) 1495–1505.
[45] F. Saiter, S. Leclercq, Modeling of the non-monotonous viscoplastic behavior of uranium dioxide, J. of Nucl. Mater., 322 (2003) 1–14.
[46] N. Marchal, C. Campos, C. Garnier, Finite element simulation of Pellet-Cladding Interaction (PCI) in nuclear fuel rods, Computat. Mater. Sci., 45 (2009) 821–826.
[47] L. Bourgeois, P. Dehaudt, C. Lemaignan, A. Hammou, Factors governing microstructure development of Cr2O3-doped UO2 during sintering, J. Nucl. Mater., 297 (2001) 313–326.
[48] J. Arborelius, K. Backman, L. Hallstadius, M. Limback, J. Nilsson, B. Rebensdorff, G. Zhou, K. Kitano, R. Lofstrom, G. Ronnberg, advanced doped UO2 pellets in LWR applications, J. of Nucl. Sci. & Techn., 43 (2006) 967–976.
[49] C. Nonon, J.C. Menard, S. Lansiart, J. Noirot, S. Martin, G.M. Decroix, O. Rabouille, C. Delafoy, B. Petitprez, PCI behavior of chromium oxide doped fuel, in: Proceedings of the International Seminar on PCI with Water Reactor Fuel, Aixen-Provence, France, (2004) 305-319.