In cooperation with the Iranian Nuclear Society

Investigating the effects of high-energy pulsed protons on the surface and structural properties of copper and tungsten by MTPF-2 plasma focus device

Document Type : Research Paper

Authors

1 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran, Iran

2 Faculty of Physics, University of Isfahan, Postalcode: 81746-73441, Isfahan, Iran

3 Physics Department, Faculty of Sciences, Urmia University, P.O. Box: 165, Urmia, Iran

4 Research School of Physics and Accelerators, Nuclear Science and Technology Research Institute, AEOI. P.O. Box: 14399-51113, Tehran, Iran

Abstract
In the present work, the results of using a low energy plasma focus device MTPF-2, in order to investigate the destructive effects of shockwave and high-energy ions on tungsten and copper surfaces, are presented. Tungsten and copper were selected as a relatively hard and soft metals, respectively. The samples were placed at a distance of 8 cm from the upper anode surface at zero degrees relative to the symmetry axis and were exposed to ions and a shockwave from 20 electrical discharges. The discharge voltages were 12 kV and carried out in hydrogen gas at a pressure of 1mbar. By using the optical microscopy images, scanning electron microscopy images, x-ray diffraction spectroscopy, and x-ray diffraction analysis, the reference and irradiated samples were analyzed. The results, in addition to confirming the performance of the MTPF-2 device to be used in such studies, showed that the collision of ions and the shockwave creates, cracks and blister at the surface of the tungsten, lead to the creation of cracks, blisters, and melting of the copper surface, and changing the crystalline parameters such as the Bragg angles, the intensity of the peaks of the diffraction spectrum, and the distance between the crystalline plates. The calculations, which were performed by using the Scherrer’s formula also show a change in the average grain size of both metal surfaces.

Highlights

1.             S. Wurster, N. Baluc. You, R. Pippan, Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials, J. Nuc. Mat. 442, 181-189 (2013).

 

2.             H. Bolt, et al, Plasma facing and high heat flux materials – needs for ITER and beyond, J. Nuc. Mat. 307, 43-52 (2002).

 

3.             M. Roedig, et al, Investigation of tungsten alloys as plasma facing materials for the ITER divertor, Fus. Eng. Des. 61-62, 135-140, (2002)

 

4.             B.I. Khripunov, V.S. Koidan, A.I. Ryazanov,  Study of Tungsten as a Plasma-facing Material for a Fusion Reactor, Phy.  Pro. 71, 63-67 (2015).

 

5.             H. Bolt, V. Barabash, W. Krauss, Materials for the plasma-facing components of fusion reactors, J. Nuc. Mat. 329-333, 66-73 (2004).

 

6.             S.H. Saw, et al, Damage Study of Irradiated Tungsten using fast focus mode of a 2.2 kJ plasma focus, Vac. 144, 14-20 (2017).

 

7.             J. Brooks, et al, Plasma-facing material alternatives to tungsten, Nuc. Fus. 55, 043002 (2015)

 

8.             S. Javadi, et al, Topographical, structural and hardness changes in surface layer of stainless steel-AISI 304 irradiated by fusion-relevant high energy deuterium ions and neutrons in a low energy plasma focus device, Surf. Cot. Tech. 313, 73-81 (2017).

 

9.             F.W. Meyer, P.S. Krstic, H. Hijazi, Surface-morphology changes and damage in hot tungsten by impact of 80 eV – 12 keV He-ions and keV-energy self-atoms, Journal of Physics: Con. Ser. 488, 012036 (2014).

 

10.          B.B. Cipiti, G.L. Kulcinski, Helium and deuterium implantation in tungsten at elevated temperatures, J. Nuc. Mat. 347, 298-306 (2005).

 

11.          M. Bhuyan, et al, Plasma focus assisted damage studies on tungsten, Appl. Sur. Sci. 264, 674-680 (2013).

 

12.          N.J. Dutta, N. Buzarbaruah, S.R. Mohanty, Damage studies on tungsten due to helium ion irradiation, J. Nucl. Mat. 452, 51-56 (2014).

 

13.          M.J. Inestrosa-Izurieta, E. Ramos-Moore, L. Soto, Morphological and structural effects on tungsten targets produced by fusion plasma pulses from a table top plasma focus, Nuc. Fus. 55, 093011 (2015).

 

14.          M. Habibi, Experimental Study of the Anode Geometry and Insulator Material-Length Effect on Ion Beam Intensity in a Mather Type Plasma Focus Device, J. Nuc. Sci. & Technol., Vol. 38, Issue 80, 10-17 (2017).

 

15.          S. Lee, A. Serban, Dimensions and lifetime of the plasma focus pinch, IEEE.  24, 1101-1105 (1996).

 

16.          S. Al-Hawat, et al, Using Mather-type plasma focus device for surface modification of AISI304 Steel, Vac. 80 (2010).

 

17.          V. Gribkov, et al, Plasma dynamics in the PF-1000 device under full-scale energy storage: II. Fast electron and ion characteristics versus neutron emission parameters and gun optimization perspectives, J.  Phy. D. 40, 3592 (2007).

 

18.          Cicuttin, et al., Experimental results on the irradiation of nuclear fusion relevant materials at the dense plasma focus ‘Bora’ device, Nuclear Fusion, 55(6), 063037, (2015).

 

19.          IAEA-Tecdoc-1708, Integrated Approach to Dense Magnetized Plasmas Application in Nuclear Fusion Technology, IAEA, Vienna, (2013).

 

20.          A. Bernard, et al., Scientific status of plasma focus research, J. Moscow Phys. Soc. 8, 93-170 (1998).

 

21.          V. Gribkov, et al, Interaction of high temperature deuterium plasma streams and fast ion beams with stainless steels in dense plasma focus device, J. Phy. 36, 1817 (2003).

 

22.          J. Gunn, et al, Surface heat loads on the ITER divertor vertical targets, Nuc. Fus. 57, 046025 (2017).

 

23.          G. Kalinin, et al, Structural materials for ITER in-vessel component design, J. Nuc. Mat. 233, 9-16 (1996).

 

24.          V. Pimenov, S. Maslyaev, Surface and bulk processes in materials induced by pulsed ion and plasma beams at Dense Plasma Focus devices, Nu. kl. 51(1), 71-78 (2006).

 

25.          R. Rayaprolu, et al, Simulation of neutron irradiation damage in tungsten using higher energy protons, Nuc. Mat. E. 9, 29-35, (2016).

 

26.          M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and materials processing, 2nd ed., Wiley. Int., ISBN 978-0471005773.

 

27.          R. Egerton, et al, Basic questions related to electron-induced sputtering in the TEM, Ultramicroscopy, Vol. 110, Issues (8), 991-997 (2010).

 

28.          Y. Kudriavtsev, et al, Calculation of the surface binding energy for ion sputtered particles, Applied surface science, Vol. 239, Issues 3-4, 273-278 (2005).

 

29.          S. Lee, Radiative dense plasma focus computation package: RADPF, online available, http://www.plasma focus net/IPFS/ modelpackage/ File1RADPF.htm., http//www. intimal.edu.my/ school/fas/UFLF (2013).

 

30.          N.J. Dutta, S.R. Mohanty, N. Buzarbauah, Modification on graphite due to helium ion irradiation, Phys. Lett. A, doi/10.1016/ j.physleta. 2016.05.044 (2016).

Keywords


1.             S. Wurster, N. Baluc. You, R. Pippan, Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials, J. Nuc. Mat. 442, 181-189 (2013).
 
2.             H. Bolt, et al, Plasma facing and high heat flux materials – needs for ITER and beyond, J. Nuc. Mat. 307, 43-52 (2002).
 
3.             M. Roedig, et al, Investigation of tungsten alloys as plasma facing materials for the ITER divertor, Fus. Eng. Des. 61-62, 135-140, (2002)
 
4.             B.I. Khripunov, V.S. Koidan, A.I. Ryazanov,  Study of Tungsten as a Plasma-facing Material for a Fusion Reactor, Phy.  Pro. 71, 63-67 (2015).
 
5.             H. Bolt, V. Barabash, W. Krauss, Materials for the plasma-facing components of fusion reactors, J. Nuc. Mat. 329-333, 66-73 (2004).
 
6.             S.H. Saw, et al, Damage Study of Irradiated Tungsten using fast focus mode of a 2.2 kJ plasma focus, Vac. 144, 14-20 (2017).
 
7.             J. Brooks, et al, Plasma-facing material alternatives to tungsten, Nuc. Fus. 55, 043002 (2015)
 
8.             S. Javadi, et al, Topographical, structural and hardness changes in surface layer of stainless steel-AISI 304 irradiated by fusion-relevant high energy deuterium ions and neutrons in a low energy plasma focus device, Surf. Cot. Tech. 313, 73-81 (2017).
 
9.             F.W. Meyer, P.S. Krstic, H. Hijazi, Surface-morphology changes and damage in hot tungsten by impact of 80 eV – 12 keV He-ions and keV-energy self-atoms, Journal of Physics: Con. Ser. 488, 012036 (2014).
 
10.          B.B. Cipiti, G.L. Kulcinski, Helium and deuterium implantation in tungsten at elevated temperatures, J. Nuc. Mat. 347, 298-306 (2005).
 
11.          M. Bhuyan, et al, Plasma focus assisted damage studies on tungsten, Appl. Sur. Sci. 264, 674-680 (2013).
 
12.          N.J. Dutta, N. Buzarbaruah, S.R. Mohanty, Damage studies on tungsten due to helium ion irradiation, J. Nucl. Mat. 452, 51-56 (2014).
 
13.          M.J. Inestrosa-Izurieta, E. Ramos-Moore, L. Soto, Morphological and structural effects on tungsten targets produced by fusion plasma pulses from a table top plasma focus, Nuc. Fus. 55, 093011 (2015).
 
14.          M. Habibi, Experimental Study of the Anode Geometry and Insulator Material-Length Effect on Ion Beam Intensity in a Mather Type Plasma Focus Device, J. Nuc. Sci. & Technol., Vol. 38, Issue 80, 10-17 (2017).
 
15.          S. Lee, A. Serban, Dimensions and lifetime of the plasma focus pinch, IEEE.  24, 1101-1105 (1996).
 
16.          S. Al-Hawat, et al, Using Mather-type plasma focus device for surface modification of AISI304 Steel, Vac. 80 (2010).
 
17.          V. Gribkov, et al, Plasma dynamics in the PF-1000 device under full-scale energy storage: II. Fast electron and ion characteristics versus neutron emission parameters and gun optimization perspectives, J.  Phy. D. 40, 3592 (2007).
 
18.          Cicuttin, et al., Experimental results on the irradiation of nuclear fusion relevant materials at the dense plasma focus ‘Bora’ device, Nuclear Fusion, 55(6), 063037, (2015).
 
19.          IAEA-Tecdoc-1708, Integrated Approach to Dense Magnetized Plasmas Application in Nuclear Fusion Technology, IAEA, Vienna, (2013).
 
20.          A. Bernard, et al., Scientific status of plasma focus research, J. Moscow Phys. Soc. 8, 93-170 (1998).
 
21.          V. Gribkov, et al, Interaction of high temperature deuterium plasma streams and fast ion beams with stainless steels in dense plasma focus device, J. Phy. 36, 1817 (2003).
 
22.          J. Gunn, et al, Surface heat loads on the ITER divertor vertical targets, Nuc. Fus. 57, 046025 (2017).
 
23.          G. Kalinin, et al, Structural materials for ITER in-vessel component design, J. Nuc. Mat. 233, 9-16 (1996).
 
24.          V. Pimenov, S. Maslyaev, Surface and bulk processes in materials induced by pulsed ion and plasma beams at Dense Plasma Focus devices, Nu. kl. 51(1), 71-78 (2006).
 
25.          R. Rayaprolu, et al, Simulation of neutron irradiation damage in tungsten using higher energy protons, Nuc. Mat. E. 9, 29-35, (2016).
 
26.          M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and materials processing, 2nd ed., Wiley. Int., ISBN 978-0471005773.
 
27.          R. Egerton, et al, Basic questions related to electron-induced sputtering in the TEM, Ultramicroscopy, Vol. 110, Issues (8), 991-997 (2010).
 
28.          Y. Kudriavtsev, et al, Calculation of the surface binding energy for ion sputtered particles, Applied surface science, Vol. 239, Issues 3-4, 273-278 (2005).
 
29.          S. Lee, Radiative dense plasma focus computation package: RADPF, online available, http://www.plasma focus net/IPFS/ modelpackage/ File1RADPF.htm., http//www. intimal.edu.my/ school/fas/UFLF (2013).
 
30.          N.J. Dutta, S.R. Mohanty, N. Buzarbauah, Modification on graphite due to helium ion irradiation, Phys. Lett. A, doi/10.1016/ j.physleta. 2016.05.044 (2016).