[1] E. Patrito, R. Torresi, E. Leiva, V. Macagno, Electrochemical behaviour of passive zirconium alloys. Electrochim. acta. 37 (1992) 281-287.
[2] S. Yamanaka, K. Yoshioka, M. Uno, M. Katsura, H. Anada, Thermal and mechanical properties of zirconium hydride. J. Alloy Compd. 293–295 (1999) 23-29.
[3] S. Yamanaka, K. Yamada, K. Kurosaki, M. Uno, K. Takeda, Characteristics of zirconium hydride and deuteride. J. Alloy Compd. 330 (2002) 99-104.
[4] S. Yamanaka, K. Yamada, K. Kurosaki, M. Uno, K. Takeda, Analysis of the electronic structure of zirconium hydride. J. Alloy Compd. 330 (2002) 313-317.
[5] Y. Liu, Q. Peng, W. Zhao, H. Jiang, Hydride precipitation by cathodic hydrogen charging method in zirconium alloys. Mater. Chem. Phys. 110 (2008) 56-60.
[6] M.P. Puls, The effect of hydrogen and hydrides on the integrity of zirconium alloy components, Springer, (2012).
[7] P.H. Davies, R.S. Shewfelt, Link Between Results of Small-and Large-Scale Toughness Tests on Irradiated Zr-2.5 Nb Pressure Tube Material, Zirconium in the Nuclear Industry: Eleventh International Symposium. ASTM Special Technical Publication, 1295 (1996) 492-517.
[8] A. McMinn, E.C. Darby, J.S. Schofield, The terminal solid solubility of hydrogen in zirconium alloys, Zirconium in the Nuclear Industry: Twelfth International Symposium. ASTM special technical publication, 1354 (2000) 173-195.
[9] A. Aladjem, Zirconium-hydrogen. Solid State Phenom. 49 (1996) 281-330.
[10] A. Sawatzky, C. Ells, Understanding hydrogen in zirconium, Zirconium in the Nuclear Industry: Twelfth International Symposium. ASTM Special Technical Publication, 1354 (2000) 32-50.
[11] E. Zuzek, J. Abriata, A. San-Martin, F. Manchester, The H-Zr (hydrogen-zirconium) system. Bull. Alloy Phase Diagr. 11 (1990) 385-395.
[12] J. Kearns, Diffusion coefficient of hydrogen in alpha zirconium, Zircaloy-2 and Zircaloy-4. J. Nucl. Mater. 43 (1972) 330-338.
[13] J.A.L. Robertson, Zirconium—an international nuclear material. J. Nucl. Mater. 100 (1981) 108-118.
[14] Y. Choi, Formation of hydride in zircaloy-4 cladding tube. J. Mater. Sci. Lett. 16 (1997) 66-67.
[15] A.J. Parkison, S.M. McDeavitt, Hydride formation process for the powder metallurgical recycle of zircaloy from used nuclear fuel. Metall. Mater. Trans. A. 42 (2011) 192-201.
[16] M. Puls, The influence of hydride size and matrix strength on fracture initiation at hydrides in zirconium alloys. Metall. Trans. A. 19 (1988) 1507-1522.
[17] R.M. Barrer, Diffusion in and through Solids, Cambridge university press, (1951).
[18] A. Zuttel, Materials for hydrogen storage. Mater Today. 6 (2003) 24-33.
[19] J.J. Reilly, G.D. Sandrock, Hydrogen storage in metal hydrides. Sci. Am. 242 (1980) 118-129.
[20] K. Shashikala, Hydrogen Storage Materials. Functional Materials, Elsevier, (2012), 607-637.
[21] A. Zuttel, Hydrogen storage methods. Naturwissenschaften. 91 (2004) 157-172.
[22] L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications. Nature. 414 (2001) 353-358.
[23] P. Tammela, Preparation and characterization of a metal hydride electrode, Uppsala university, Sweden, Student thesis, (2012).
[24] R. Attermo, A. Sietnieks, Electrolytic hydriding of zirconium. Electrochim. Acta. 14 (1969) 21.
[25] M. Blat, D. Noel, Detrimental role of hydrogen on the corrosion rate of zirconium alloys, Zirconium in the Nuclear Industry: Eleventh International Symposium. ASTM Special Technical Publication, 1295 (1996) 319-335.
[26] A. Barnoush, Hydrogen embrittlement, Saarland University, (2011).
[27] C. Lemaignan, 2.07-Zirconium Alloys: Properties and Characteristics. Comprehensive Nuclear Materials, Elsevier, Oxford (2012), 217-232.
[28] R. Adamson, F. Garzarolli, B. Cox, A. Strasser, P. Rudling, Corrosion mechanisms in zirconium alloys, ZIRAT12 Special Topic Report; ANT International, Sweden, (2007).
[29] D. Vojtech, B. Sustarsic, M. Mortanikova, A. Michalcova, A. Vesela, Electrochemical hydriding as method for hydrogen storage? Int J. Hydrogen Energ. 34 (2009) 7239-7245.
[30] W. Zhang, M.S. Kumar, S. Srinivasan, H.J. Ploehn, Ac impedance studies on metal hydride electrodes. J. Electrochem. Soc. 142 (1995) 2935-2943.
[31] J. Chen, S. Dou, D. Bradhurst, H. Liu, Studies on the diffusion coefficient of hydrogen through metal hydride electrodes. Int J. Hydrogen Energ. 23 (1998) 177-182.
[32] J. Dobson, G. Brims, Attempts on the electrolytic hydrogen charging of zirconium and the measurements of the pH response of surface oxides. Electrochim. acta. 31 (1986) 887-890.
[33] Y. Choi, J.W. Lee, Y.W. Lee, S.I. Hong, Hydride formation by high temperature cathodic hydrogen charging method and its effect on the corrosion behavior of Zircaloy-4 tubes in acid solution. J. Nucl. Mater. 256 (1998) 124-130.
[34] J.T. John, P. De, H. Gadiyar, High temperature cathodic charging of hydrogen in zirconium alloys and iron and nickel base alloys, Bhabha Atomic Research Centre, Bombay (India), (1990).
[35] G. Nesterov, E. Paukshtis, V. Zakharov, IR spectroscopic studies of CO interaction with surface zirconium hydrides. React. Kinet. Catal. L. 26 (1984) 357-361.
[36] G.G. Hlatky, R. H. Crabtree, Transition-metal polyhydride complexes. Coordin. Chem. Rev. 65 (1985) 1-48.
[37] W. Hertl, Surface chemistry of zirconia polymorphs. Langmuir. 5 (1989) 96-100.
[38] T. Onishi, H. Abe, K-i. Maruya, K. Domen, Ir spectra of hydrogen adsorbed on ZrO2. J. Chem. Soc. Chem. Comm. (1985) 617-618.
[39] V. Zakharov, V. Dudchenko, E. Paukshtis, L. Karakchiev, Y.I. Yermakov, Formation of zirconium hydrides in supported organozirconium catalysts and their role in ethylene polymerization. J. Mol. Catal. 2 (1977) 421-435.
[40] P. Wailes, H. Weigold, Hydrido complexes of zirconium I. Preparation. J. Organomet. Chem. 24 (1970) 405-411.
[41] F.C. Jentoft, Sulfated Zirconia Alkane Isomerization Catalysts: A Treatise, Humboldt-Universität zu Berlin Berlin, PhD Thesis, (2004).
[42] Y. Waseda, E. Matsubara, K. Shinoda, X-ray diffraction crystallography: introduction, examples and solved problems, Springer, (2011).
[43] J. Blomqvist, J. Olofsson, A.M. Alvarez, C. Bjerken, Structure and Thermodynamical Properties of Zirconium hydrides from first-principle. arXiv preprint arXiv:1211.0858. (2012).