In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

Abstract

Investigation into the destructive effects of the hydride formation on the zirconium fuel claddings, involves working with radioactive materials. In order to avoid this problem, in this study, zirconium hydride phases were created on the Zr-1%Nb alloy (used in nuclear fuel cladding), by the electrochemical charging method. The experiments were carried out in 0.017 M NaCl aqueous solution at room temperature. The samples were analyzed by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the protective oxide layer had been destroyed, and Zr-H-Zr and Zr-H bonds were formed on the surface. In addition, by diffusion and increasing the hydrogen concentration in the bulk, ZrH2 and ZrH hydride phases had been formed in addition to the cracks in the sample, because these phases had about 10% difference in volume with the zirconium phase.

Keywords

[1] E. Patrito, R. Torresi, E. Leiva, V. Macagno, Electrochemical behaviour of passive zirconium alloys. Electrochim. acta. 37 (1992) 281-287.
 
[2] S. Yamanaka, K. Yoshioka, M. Uno, M. Katsura, H. Anada, Thermal and mechanical properties of zirconium hydride. J. Alloy Compd. 293–295 (1999) 23-29.
 
[3] S. Yamanaka, K. Yamada, K. Kurosaki, M. Uno, K. Takeda, Characteristics of zirconium hydride and deuteride. J. Alloy Compd. 330 (2002) 99-104.
 
[4] S. Yamanaka, K. Yamada, K. Kurosaki, M. Uno, K. Takeda, Analysis of the electronic structure of zirconium hydride. J. Alloy Compd. 330 (2002) 313-317.
 
[5] Y. Liu, Q. Peng, W. Zhao, H. Jiang, Hydride precipitation by cathodic hydrogen charging method in zirconium alloys. Mater. Chem. Phys. 110 (2008) 56-60.
 
[6] M.P. Puls, The effect of hydrogen and hydrides on the integrity of zirconium alloy components, Springer, (2012).
 
[7] P.H. Davies, R.S. Shewfelt, Link Between Results of Small-and Large-Scale Toughness Tests on Irradiated Zr-2.5 Nb Pressure Tube Material, Zirconium in the Nuclear Industry: Eleventh International Symposium. ASTM Special Technical Publication, 1295 (1996) 492-517.
 
[8] A. McMinn, E.C. Darby, J.S. Schofield, The terminal solid solubility of hydrogen in zirconium alloys, Zirconium in the Nuclear Industry: Twelfth International Symposium. ASTM special technical publication, 1354 (2000) 173-195.
 
[9] A. Aladjem, Zirconium-hydrogen. Solid State Phenom. 49 (1996) 281-330.
 
[10] A. Sawatzky, C. Ells, Understanding hydrogen in zirconium, Zirconium in the Nuclear Industry: Twelfth International Symposium. ASTM Special Technical Publication, 1354 (2000) 32-50.
 
[11] E. Zuzek, J. Abriata, A. San-Martin, F. Manchester, The H-Zr (hydrogen-zirconium) system. Bull. Alloy Phase Diagr. 11 (1990) 385-395.
[12] J. Kearns, Diffusion coefficient of hydrogen in alpha zirconium, Zircaloy-2 and Zircaloy-4. J. Nucl. Mater. 43 (1972) 330-338.
 
[13] J.A.L. Robertson, Zirconium—an international nuclear material. J. Nucl. Mater. 100 (1981) 108-118.
 
[14] Y. Choi, Formation of hydride in zircaloy-4 cladding tube. J. Mater. Sci. Lett. 16 (1997) 66-67.
 
[15] A.J. Parkison, S.M. McDeavitt, Hydride formation process for the powder metallurgical recycle of zircaloy from used nuclear fuel. Metall. Mater. Trans. A. 42 (2011) 192-201.
 
[16] M. Puls, The influence of hydride size and matrix strength on fracture initiation at hydrides in zirconium alloys. Metall. Trans. A. 19 (1988) 1507-1522.
 
[17] R.M. Barrer, Diffusion in and through Solids, Cambridge university press, (1951).
 
[18] A. Zuttel, Materials for hydrogen storage. Mater Today. 6 (2003) 24-33.
 
[19] J.J. Reilly, G.D. Sandrock, Hydrogen storage in metal hydrides. Sci. Am. 242 (1980) 118-129.
 
[20] K. Shashikala, Hydrogen Storage Materials.  Functional Materials, Elsevier, (2012), 607-637.
 
[21] A. Zuttel, Hydrogen storage methods. Naturwissenschaften. 91 (2004) 157-172.
 
[22] L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications. Nature. 414 (2001) 353-358.
 
[23] P. Tammela, Preparation and characterization of a metal hydride electrode, Uppsala university, Sweden, Student thesis, (2012).
 
[24] R. Attermo, A. Sietnieks, Electrolytic hydriding of zirconium. Electrochim. Acta. 14 (1969) 21.
 
[25] M. Blat, D. Noel, Detrimental role of hydrogen on the corrosion rate of zirconium alloys, Zirconium in the Nuclear Industry: Eleventh International Symposium. ASTM Special Technical Publication, 1295 (1996) 319-335.
[26] A. Barnoush, Hydrogen embrittlement, Saarland University, (2011).
 
[27] C. Lemaignan, 2.07-Zirconium Alloys: Properties and Characteristics.  Comprehensive Nuclear Materials, Elsevier, Oxford (2012), 217-232.
 
[28] R. Adamson, F. Garzarolli, B. Cox, A. Strasser, P. Rudling, Corrosion mechanisms in zirconium alloys, ZIRAT12 Special Topic Report; ANT International, Sweden, (2007).
 
[29] D. Vojtech, B. Sustarsic, M. Mortanikova, A. Michalcova, A. Vesela, Electrochemical hydriding as method for hydrogen storage? Int J. Hydrogen Energ. 34 (2009) 7239-7245.
 
[30] W. Zhang, M.S. Kumar, S. Srinivasan, H.J. Ploehn, Ac impedance studies on metal hydride electrodes. J. Electrochem. Soc. 142 (1995) 2935-2943.
 
[31] J. Chen, S. Dou, D. Bradhurst, H. Liu, Studies on the diffusion coefficient of hydrogen through metal hydride electrodes. Int J. Hydrogen Energ. 23 (1998) 177-182.
 
[32] J. Dobson, G. Brims, Attempts on the electrolytic hydrogen charging of zirconium and the measurements of the pH response of surface oxides. Electrochim. acta. 31 (1986) 887-890.
 
[33] Y. Choi, J.W. Lee, Y.W. Lee, S.I. Hong, Hydride formation by high temperature cathodic hydrogen charging method and its effect on the corrosion behavior of Zircaloy-4 tubes in acid solution. J. Nucl. Mater. 256 (1998) 124-130.
 
[34] J.T. John, P. De, H. Gadiyar, High temperature cathodic charging of hydrogen in zirconium alloys and iron and nickel base alloys, Bhabha Atomic Research Centre, Bombay (India), (1990).
[35] G. Nesterov, E. Paukshtis, V. Zakharov, IR spectroscopic studies of CO interaction with surface zirconium hydrides. React. Kinet. Catal. L. 26 (1984) 357-361.
 
[36] G.G. Hlatky, R. H. Crabtree, Transition-metal polyhydride complexes. Coordin. Chem. Rev. 65 (1985) 1-48.
 
[37] W. Hertl, Surface chemistry of zirconia polymorphs. Langmuir. 5 (1989) 96-100.
 
[38] T. Onishi, H. Abe, K-i. Maruya, K. Domen, Ir spectra of hydrogen adsorbed on ZrO2. J. Chem. Soc. Chem. Comm.  (1985) 617-618.
 
[39] V. Zakharov, V. Dudchenko, E. Paukshtis, L. Karakchiev, Y.I. Yermakov, Formation of zirconium hydrides in supported organozirconium catalysts and their role in ethylene polymerization. J. Mol. Catal. 2 (1977) 421-435.
 
[40] P. Wailes, H. Weigold, Hydrido complexes of zirconium I. Preparation. J. Organomet. Chem. 24 (1970) 405-411.
 
[41] F.C. Jentoft, Sulfated Zirconia Alkane Isomerization Catalysts: A Treatise, Humboldt-Universität zu Berlin Berlin, PhD Thesis, (2004).
 
[42] Y. Waseda, E. Matsubara, K. Shinoda, X-ray diffraction crystallography: introduction, examples and solved problems, Springer, (2011).
 
[43] J. Blomqvist, J. Olofsson, A.M. Alvarez, C. Bjerken, Structure and Thermodynamical Properties of Zirconium hydrides from first-principle. arXiv preprint arXiv:1211.0858. (2012).