Document Type : Research Paper
Authors
1 Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, P.O.Box: 14155-1339, Tehran – Iran
2 Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 1339-14155, Tehran – Iran
Highlights
1. M. Jakob, W.F. Fritz, Versuche uber den verdampfungsvorgang, Forsch. Ingenieurwes. 2(12), 435-447 (1931).
2. V.K. Dhir, Boiling heat transfer, Annu. Rev. Fluid Mech. 30, 365–401 (1998).
3. I.L. Pioro, W. Rohsenow, S.S. Doerffer, Nucleate pool-boiling heat transfer. I: review of parametric effects of boiling surface, Int. J. Heat Mass Transfer, 47 (23), 5033-5044 (2004).
4. R.L. Webb, The evolution of enhanced surface geometries for nucleate boiling, Heat Transfer Eng, 2 (3–4), 46-69 (1981).
5. S.G.K. Yen-Wen Lu, Nanoscale surface modification techniques for pool boiling enhancement–a critical review and future directions, Heat Transfer Eng, 32 (10), 827-842 (2011).
6. M. Shojaeian, A. Kosar, Pool boiling and flow boiling on micro- and nanostructured surfaces, Exp. Therm. Fluid Sci. 63, 45–73 (2015).
7. S. Bhavnani, et al, Boiling augmentation with micro/nanostructured surfaces: current status and research outlook, Nanoscale Microscale Thermophys. Eng. 18 (3), 197-222 (2014).
8. J. Buongiorno, et al, Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, Issues, and Research Gaps, Nucl. Technol. 162, 80–91 (2008).
9. A. Charlot, X. Deschanels, G. Toquer, Submicron coating of SiO2 nanoparticles from electrophoretic deposition, Thin Solid Films, 553, 148-152 (2014).
10. S.J. Kline, F.A. McClintock, Describing uncertainties in single-sample Experiments, Mech. Eng. P. 3, (January 1953).
11. E. Forrest, et al, Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings, Int. J. Heat Mass Transfer, 53, 58-67 (2010).
12. M. Tetreault-Friend, et al, Critical heat flux maxima resulting from the controlled morphology of nanoporous hydrophilic surface layers, Appl. Phys. Lett. 108 (24), 243102 (2016).
13. S.M. Kwark, et al, Nanocoating characterization in pool boiling heat transfer of pure water, Int. J. Heat Mass Transfer, 53 (21-22), 4579-4587 (2010).
14. H.S. Ahn, J.M. Kim, M.H. Kim, Experimental study of the effect of a reduced graphene oxide coating on critical heat flux enhancement, Int. J. Heat Mass Transfer, 60, 763-771 (2013).
15. J.M. Kim, et al, Effect of a graphene oxide coating layer on critical heat flux enhancement under pool boiling, Int. J. Heat Mass Transfer, 77, 919-927 (2014).
16. N. Zuber, Hydrodynamic aspects of boiling heat transfer, AECU-4439, Atomic Energy Commission, (1959).
17. S.G. Kandlikar, A Theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation, J. Heat Transfer, 123, 1071-1079 (2001).
18. L. Liao, R. Bao, Z.H. Liu, Compositive effects of orientation and contact angle on critical heat flux in pool boiling of water, Heat Mass Transfer, 44, 1447-1453 (2008).
19. V.K. Dhir, S.P. Liaw, Framework for a unified model for nucleate and transition pool boiling, J. Heat Transfer, 111, 739–746 (1989).
20. C.C. Hsu, P.H. Chen, Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings, International Journal of Heat and Mass Transfer, 55, 3713-3719 (2012).
Keywords