In cooperation with the Iranian Nuclear Society

Design and fabrication of Langmuir probe system for determination of glow discharge parameters for vacuum vessel conditioning of Damavand tokamak

Document Type : Research Paper

Authors

1 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.BOX:14399-51113, Tehran, Iran

2 Department of the Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box: 15875-4413, Tehran, Iran

Abstract
In this paper, the plasma parameters of hydrogen glow discharge were measured using Langmuir probe system. To measure these parameters in Damavand tokamak, different parts of the Langmuir probe were designed and fabricated. The electrode used in this system is a tungsten wire with diameter and length of 0.1 and 6 mm, respectively. The electrical circuit constructed for this system is capable of supplying voltage and current in the order of 400 V and 1 A, and can produce triangular pulses in the frequency range of 10 Hz to 10 kHz, respectively. Glow discharge hydrogen plasma, which is used for vacuum vessel cleaning and conditioning, is produced by two electrodes located in the lower part of the Damavand tokamak with the voltage of 450 V, current of 1.5 A and pressure of 10-3 Torr. By applying voltage to the electrode of probe, in the range of 200 to 350 V, the current drawn from the probe was measured. By interpreting the current-voltage characteristic, the plasma parameters were determined. The electron temperature, plasma density, plasma potential, and Debye length of the hydrogen glow discharge measured using this system are 5.8e V, 1.17×1015 m-3, 236 V and 523 μm, respectively.

Highlights

1.  J. Wesson, D.J. Campbell, Tokamaks, OUP Oxford2011.

 

2.  M. Shimada, S. Putvinski, R.A. Pitts, Glow discharge cleaning on ITER.

 

3.   Y. Yamauchi, K. Takeda, Y. Nobuta, T. Hino, Hydrogen and helium removal retained in stainless steel by neon glow discharge, Journal of Nuclear Materials 390 (2009) 1048-1050.

 

4.     Z. Khan, S. George, P. Semwal, K.R. Dhanani, F.S. Pathan, Y. Paravastu, D.C. Raval, G.R. Babu, M.S. Khan, S. Pradhan, Conditioning of SST-1 Tokamak Vacuum Vessel by Baking and Glow Discharge Cleaning, Fusion Engineering and Design 103 (2016) 69-73.

 

5.    M. Shimada, R.A. Pitts, Wall conditioning on ITER, Journal of Nuclear Materials 415(1, Supplement) (2011) S1013-S1016.

 

6.   H.F. Dylla, S.A. Cohen, S.M. Rossnagel, G.M. McCracken, P. Staib, Glow discharge conditioning of the PDX vacuum vessel, Journal of Vacuum Science and Technology 17(1) (1980) 286-290.

 

7.    G. Saibene, A. Rossi, R.D. Monk, J. Orchard, P. Andrew, R. Barnsley, D. Cushing, P.J. Coad, S. Davies, K. Erents, H.Y. Guo, K. Lawson, J. Lingertat, G. Matthews, G. Sips, M. Stamp, A. Tanga, Review of vacuum vessel conditioning procedures at JET and their impact on plasma operation, Journal of Nuclear Materials 220-222

(1995) 617-622.

 

8.    F. Waelbroeck, J. Winter, P. Wienhold, Cleaning and conditioning of the walls of plasma devices by glow discharges in hydrogen, Journal of Vacuum Science & Technology A 2(4) (1984) 1521-1536.

 

9.  N. Morshedian, F. Shahverdi, A. Farahbod, Investiycrtion of electron temperature and density of laser-induced-plasma by Langmuir probe up to the centimeters scale distance from the target, Journal of Nuclear Science and Tehnology 35 (2014) , (In Persian).

 

10. A. Mazandarani, Design and Construction of Double Langmuir Probe, Amirkabir University of Technology (Tehran Polytechnic), 2015, (In Persian).

 

11.  S. Fazelpour, Design and Construction of Single Langmuir Probe for Alborz Tokamak, Amirkabir University of Technology (Tehran Polytechnic), 2015 , (In Persian).

 

12.  S. Shahshenas, A. Mazandarani, R. Amrollahi, D. Iraji, Alborz tokamak plasma parameters measurement at pre-ionization stage by double langmuir probes, International Conference on Plasma Science and Application, IEEE, Isfahan, 2015.

 

13. A. Mazandarani, and S. Shahshenas, Electron temperature and density measurement in a glow discharge plasmaby double langmuir probe, International Conference on Plasma Science and Application, IEEE, Isfahan 2015.

 

14.   A. Mazandarani, R. Amrollahi, and S. Shahshenas, Plasma density measurement by Longmuir probe during hot cathode pre-ionization in Alborz Tokamak, International Conference on Plasma Science and Application, Isfahan, 2015.

 

15.  S.A. Ghasemi, A. Mazandarani, S. Shahshenas, Double Langmuir probe measurement of plasma parameters in a dc glow discharge, IJPR 18(3) (2018) 494-494.

 

16.  H.M. Mott-Smith, I. Langmuir, The Theory of Collectors in Gaseous Discharges, Physical Review 28(4) (1926) 727-763.

 

17. R.L. Merlino, Understanding Langmuir probe current-voltage characteristics, American Journal of Physics 75(12) (2007) 1078-1085.

 

18.   I.H. Hutchinson, Principles of Plasma Diagnostics: Second Edition, Plasma Physics and Controlled Fusion 44(12) (2002) 2603-2603.

 

19. F.F. Chen, J.D. Evans, W. Zawalski, Electric probes, Citeseer.

 

20.   R. Fitzpatrick, Plasma physics: an introduction, Crc Press2014.

 

21.  B.E. Cherrington, The use of electrostatic probes for  plasma diagnostics—A review, Plasma chemistry and plasma processing 2(2) (1982) 113-140.

 

22. M. Tuszewski, J.A. Tobin, The accuracy of Langmuir probe ion density measurements in low-frequency RF discharges, Plasma Sources Science and Technology 5(4) (1996) 640-647.

 

23. I.D. Sudit, R.C. Woods, A workstation based Langmuir probe system for low‐pressure dc plasmas, Review of Scientific Instruments 64(9) (1993) 2440-2448.

 

24.   G. Wright, D. Brunner, M. Baldwin, R. Doerner, B. Labombard, B. Lipschultz, J. Terry, D. Whyte, Tungsten nano-tendril growth in the Alcator C-Mod divertor, Nuclear Fusion 52(4) (2012) 042003.

 

25.   J.C. Xu, L. Wang, G.S. Xu, W. Feng, H. Liu, J.B. Liu, W. Zhang, T.F. Ming, C. Yip, G.Z. Deng, S.Y. Dai, D.M. Yao, G.N. Luo, H.Y. Guo, Upgrade Design of Lower Divertor Langmuir Probe Diagnostic System in the EAST Tokamak,  IEEE Transactions on Plasma Science 46(5)  (2018) 1331-1337.

 

26.   J.R. Roth, Industrial Plasma Engineering: Volume 1: Principles, CRC Press1995.

 

27. K. Honglertkongsakul, D. Ngamrungroj, Relationship of Pressure and Plasma Temperature in Plasma DC Glow Discharge, Trans Tech Publ, 2014, pp. 293-296.

 

28.  J. Wang, M. He, P. Zheng, Y. Chen, X. Mao, Comparison of the Plasma Temperature and Electron Number Density of the Pulsed Electrolyte Cathode Atmospheric Pressure Discharge and the Direct Current Solution Cathode Glow Discharge, Analytical Letters 52(4) (2019) 697-712.

 

29.  S.A. Wissel, A. Zwicker, J. Ross, S. Gershman, The use of dc glow discharges as undergraduate educational tools, American Journal of Physics 81(9) (2013) 663-669.

 

30. S. Goudarzi, A. Raeisdana, Measurement and analysis of the radiation losses in DAMAVAND Tokamak, Journal of Physics: Conference Series 516 (2014) 012032.

Keywords


1.  J. Wesson, D.J. Campbell, Tokamaks, OUP Oxford2011.
 
2.  M. Shimada, S. Putvinski, R.A. Pitts, Glow discharge cleaning on ITER.
 
3.   Y. Yamauchi, K. Takeda, Y. Nobuta, T. Hino, Hydrogen and helium removal retained in stainless steel by neon glow discharge, Journal of Nuclear Materials 390 (2009) 1048-1050.
 
4.     Z. Khan, S. George, P. Semwal, K.R. Dhanani, F.S. Pathan, Y. Paravastu, D.C. Raval, G.R. Babu, M.S. Khan, S. Pradhan, Conditioning of SST-1 Tokamak Vacuum Vessel by Baking and Glow Discharge Cleaning, Fusion Engineering and Design 103 (2016) 69-73.
 
5.    M. Shimada, R.A. Pitts, Wall conditioning on ITER, Journal of Nuclear Materials 415(1, Supplement) (2011) S1013-S1016.
 
6.   H.F. Dylla, S.A. Cohen, S.M. Rossnagel, G.M. McCracken, P. Staib, Glow discharge conditioning of the PDX vacuum vessel, Journal of Vacuum Science and Technology 17(1) (1980) 286-290.
 
7.    G. Saibene, A. Rossi, R.D. Monk, J. Orchard, P. Andrew, R. Barnsley, D. Cushing, P.J. Coad, S. Davies, K. Erents, H.Y. Guo, K. Lawson, J. Lingertat, G. Matthews, G. Sips, M. Stamp, A. Tanga, Review of vacuum vessel conditioning procedures at JET and their impact on plasma operation, Journal of Nuclear Materials 220-222
(1995) 617-622.
 
8.    F. Waelbroeck, J. Winter, P. Wienhold, Cleaning and conditioning of the walls of plasma devices by glow discharges in hydrogen, Journal of Vacuum Science & Technology A 2(4) (1984) 1521-1536.
 
9.  N. Morshedian, F. Shahverdi, A. Farahbod, Investiycrtion of electron temperature and density of laser-induced-plasma by Langmuir probe up to the centimeters scale distance from the target, Journal of Nuclear Science and Tehnology 35 (2014) , (In Persian).
 
10. A. Mazandarani, Design and Construction of Double Langmuir Probe, Amirkabir University of Technology (Tehran Polytechnic), 2015, (In Persian).
 
11.  S. Fazelpour, Design and Construction of Single Langmuir Probe for Alborz Tokamak, Amirkabir University of Technology (Tehran Polytechnic), 2015 , (In Persian).
 
12.  S. Shahshenas, A. Mazandarani, R. Amrollahi, D. Iraji, Alborz tokamak plasma parameters measurement at pre-ionization stage by double langmuir probes, International Conference on Plasma Science and Application, IEEE, Isfahan, 2015.
 
13. A. Mazandarani, and S. Shahshenas, Electron temperature and density measurement in a glow discharge plasmaby double langmuir probe, International Conference on Plasma Science and Application, IEEE, Isfahan 2015.
 
14.   A. Mazandarani, R. Amrollahi, and S. Shahshenas, Plasma density measurement by Longmuir probe during hot cathode pre-ionization in Alborz Tokamak, International Conference on Plasma Science and Application, Isfahan, 2015.
 
15.  S.A. Ghasemi, A. Mazandarani, S. Shahshenas, Double Langmuir probe measurement of plasma parameters in a dc glow discharge, IJPR 18(3) (2018) 494-494.
 
16.  H.M. Mott-Smith, I. Langmuir, The Theory of Collectors in Gaseous Discharges, Physical Review 28(4) (1926) 727-763.
 
17. R.L. Merlino, Understanding Langmuir probe current-voltage characteristics, American Journal of Physics 75(12) (2007) 1078-1085.
 
18.   I.H. Hutchinson, Principles of Plasma Diagnostics: Second Edition, Plasma Physics and Controlled Fusion 44(12) (2002) 2603-2603.
 
19. F.F. Chen, J.D. Evans, W. Zawalski, Electric probes, Citeseer.
 
20.   R. Fitzpatrick, Plasma physics: an introduction, Crc Press2014.
 
21.  B.E. Cherrington, The use of electrostatic probes for  plasma diagnostics—A review, Plasma chemistry and plasma processing 2(2) (1982) 113-140.
 
22. M. Tuszewski, J.A. Tobin, The accuracy of Langmuir probe ion density measurements in low-frequency RF discharges, Plasma Sources Science and Technology 5(4) (1996) 640-647.
 
23. I.D. Sudit, R.C. Woods, A workstation based Langmuir probe system for low‐pressure dc plasmas, Review of Scientific Instruments 64(9) (1993) 2440-2448.
 
24.   G. Wright, D. Brunner, M. Baldwin, R. Doerner, B. Labombard, B. Lipschultz, J. Terry, D. Whyte, Tungsten nano-tendril growth in the Alcator C-Mod divertor, Nuclear Fusion 52(4) (2012) 042003.
 
25.   J.C. Xu, L. Wang, G.S. Xu, W. Feng, H. Liu, J.B. Liu, W. Zhang, T.F. Ming, C. Yip, G.Z. Deng, S.Y. Dai, D.M. Yao, G.N. Luo, H.Y. Guo, Upgrade Design of Lower Divertor Langmuir Probe Diagnostic System in the EAST Tokamak,  IEEE Transactions on Plasma Science 46(5)  (2018) 1331-1337.
 
26.   J.R. Roth, Industrial Plasma Engineering: Volume 1: Principles, CRC Press1995.
 
27. K. Honglertkongsakul, D. Ngamrungroj, Relationship of Pressure and Plasma Temperature in Plasma DC Glow Discharge, Trans Tech Publ, 2014, pp. 293-296.
 
28.  J. Wang, M. He, P. Zheng, Y. Chen, X. Mao, Comparison of the Plasma Temperature and Electron Number Density of the Pulsed Electrolyte Cathode Atmospheric Pressure Discharge and the Direct Current Solution Cathode Glow Discharge, Analytical Letters 52(4) (2019) 697-712.
 
29.  S.A. Wissel, A. Zwicker, J. Ross, S. Gershman, The use of dc glow discharges as undergraduate educational tools, American Journal of Physics 81(9) (2013) 663-669.
 
30. S. Goudarzi, A. Raeisdana, Measurement and analysis of the radiation losses in DAMAVAND Tokamak, Journal of Physics: Conference Series 516 (2014) 012032.