In cooperation with the Iranian Nuclear Society

Dependence of mode profile on the pumping configuration of a LED-pumped Ce:Nd:YAG laser

Document Type : Research Paper

Authors

1 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, P.O.BOX:14399-5113, Tehran, Iran

2 Physics Department, Shahed University, P.O.BOX: 1851/159, Tehran, Iran.

Abstract
Transverse intensity distribution or laser mode profile is one of the most important characteristics of a laser oscillator. In the present study, mode profile of a LED-pumped Ce:Nd:YAG laser oscillator and its dependency on the geometrical configuration and intensity of optical pump sources have been experimentally and theoretically investigated. Experimental observations show that with a proper pumping geometry and the control of electrical pumping power of the light-emitting diodes, a wide spectrum of stable transverse beam profiles with Ince-Gaussian mode pattern can be generated. In addition, numerical computations based on randomly ray tracing and calculation of the absorbed pump power per unit volume of the active medium, gain profile, and the propagation of optical field inside the optical resonator were confirmed the effect of the pumping configuration and distance between the emitter surface of LEDs and lateral surface of the active medium on the mode profile of the laser oscillator.

Highlights

1.   W. Koechner, Solid-state laser engineering, 6th edition, Springer (2006).
2.   M.A. Bandres, J.C. Gutiérrez-Vega, Ince–Gaussian beams, Optics Lett., 29 (2):144-6 (2004).
3.   M.A. Bandres, J.C. Gutiérrez-Vega, Ince–Gaussian modes of the paraxial wave equation and stable resonators. JOSA A. 21(5), 873-80 (2004).
4.   M. Woerdemann, C.Alpmann, C. Denz, Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams, Applied physics letters. 98 (11),11110 (2011).
5.   A. Barbet, et al., Revisiting of LED pumped bulk laser: first demonstration of Nd:YVO4 LED pumped laser, Opt. Lett. 39, 6731 (2014).
6.   A. Barbet, et al., Light-emitting diode pumped luminescent concentrators: a new opportunity for low-cost solid-state lasers, Optica 3, 465 (2016).
7.  B.Villars, E.S. Hill, C.G. Durfee: Design and development of a high-power LED-pumped Ce:Nd:YAG laser, Opt. Lett. 40, 3049 (2015).
8.     K.Y. Huang, et al., Efficient 750-nm LED-pumped Nd:YAG laser, Opt. Express 24, 12043 (2016).
9.    C.Y. Cho, et al., LED-side-pumped Nd:YAG laser with>20% optical efficiency and the demonstration of an efficient passively Q-switched LED-pumped solid-state laser, Opt. Lett. 42, 2394 (2017).
10.   C.Y. Cho, et al., Energy scale-up and mode-quality enhancement of the LED-pumped Nd:YAG Q-switched laser achieving a  millijoule green pulse, Opt. Lett. 44, 3202 (2019)

11. M. Tarkashvand, A.H.‌ Farahbod, S.A. Hashemizadeh, First demonstration of green and amber LED-pumped Nd:YAG laser, Laser Physics  28, 055801, 1-7 (2018).

12. M. Tarkashvand, A.H. Farahbod, S.A. Hashenizadeh, LED-pumped passively Q-switched Ce:Nd:YAG laser, Iranian Journal of  Physics Research, 18 (3), 477-484 (2018) (In Persian).
13. F. Hokmabadi, et al., Experimental study of mode structure of a LED-pumped laser oscillator, ICOP 25th, Shiraz University, Shiraz (2019).

14.   A.E. Siegman, Lasers, University Science Books, Chapter

Keywords


1.   W. Koechner, Solid-state laser engineering, 6th edition, Springer (2006).
2.   M.A. Bandres, J.C. Gutiérrez-Vega, Ince–Gaussian beams, Optics Lett., 29 (2):144-6 (2004).
3.   M.A. Bandres, J.C. Gutiérrez-Vega, Ince–Gaussian modes of the paraxial wave equation and stable resonators. JOSA A. 21(5), 873-80 (2004).
4.   M. Woerdemann, C.Alpmann, C. Denz, Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams, Applied physics letters. 98 (11),11110 (2011).
5.   A. Barbet, et al., Revisiting of LED pumped bulk laser: first demonstration of Nd:YVO4 LED pumped laser, Opt. Lett. 39, 6731 (2014).
6.   A. Barbet, et al., Light-emitting diode pumped luminescent concentrators: a new opportunity for low-cost solid-state lasers, Optica 3, 465 (2016).
7.  B.Villars, E.S. Hill, C.G. Durfee: Design and development of a high-power LED-pumped Ce:Nd:YAG laser, Opt. Lett. 40, 3049 (2015).
8.     K.Y. Huang, et al., Efficient 750-nm LED-pumped Nd:YAG laser, Opt. Express 24, 12043 (2016).
9.    C.Y. Cho, et al., LED-side-pumped Nd:YAG laser with>20% optical efficiency and the demonstration of an efficient passively Q-switched LED-pumped solid-state laser, Opt. Lett. 42, 2394 (2017).
10.   C.Y. Cho, et al., Energy scale-up and mode-quality enhancement of the LED-pumped Nd:YAG Q-switched laser achieving a  millijoule green pulse, Opt. Lett. 44, 3202 (2019)
11. M. Tarkashvand, A.H.‌ Farahbod, S.A. Hashemizadeh, First demonstration of green and amber LED-pumped Nd:YAG laser, Laser Physics  28, 055801, 1-7 (2018).
12. M. Tarkashvand, A.H. Farahbod, S.A. Hashenizadeh, LED-pumped passively Q-switched Ce:Nd:YAG laser, Iranian Journal of  Physics Research, 18 (3), 477-484 (2018) (In Persian).
13. F. Hokmabadi, et al., Experimental study of mode structure of a LED-pumped laser oscillator, ICOP 25th, Shiraz University, Shiraz (2019).
14.   A.E. Siegman, Lasers, University Science Books, Chapter