Document Type : Research Paper
Authors
Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran, Iran
Highlights
1. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses, Opt. Commun. 55, 447 (1985).
2. G. Mourou, C.P.J. Barry, M.D. Perry, Ultrahigh-intensity lasers: physics of the extreme on a tabletop, Phys. Today, 51(1), 22 (1998).
3. D. Umstadter, Review of physics and applications of relativistic plasmas driven by ultra-intense lasers, Physics of Plasmas, 8, 1774 (2001).
4. P.J. Catto, R.M. More, Sheath inverse bremsstrahlung in laser produced plasmas, Phys. Fluids, 20, 704 (1977).
5. K. Estabrook, W.L. Kruer, B.F. Lasinski, Heating by Raman Backscatter and Forward Scatter, Phys. Rev. Lett. 45, 1399 (1980).
6. W.L. Kruer, The Physics of Laser Plasma Interaction, (Addison-Wesley, New York, 1988).
7. T. Taguchi, T.M. Antonsen Jr., H.M. Milchberg, Resonant Heating of a Cluster Plasma by Intense Laser Light, Phys. Rev. Lett. 92, 205003 (2004).
8. W.L. Kruer, K. Estabrook, J×B heating by very intense laser light, Phys. Fluids, 28, 430 (1985).
9. A.J. Lichtenberg, M.A. Lieberman, Regular and Stochastic Motion, (Springer-Verlag, New York, 1981).
10. D.W. Forslund, et al, Two-Dimensional Simulations of Single-Frequency and Beat-Wave Laser-Plasma Heating, Phys. Rev. Lett. 54, 558 (1985).
11. J.T. Mendonca, F. Doveil, Stochasticity in plasmas with electromagnetic waves, J. Plasma Phys. 28, 485 (1982).
12. Z.M. Sheng, et al, Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma, Phys. Rev. Lett. 88, 055004 (2002).
13. Z. M. Sheng, et al, Efficient acceleration of electrons with counterpropagating intense laser pulses in vacuum and underdense plasma, Plasma Phys. Rev. E, 69, 016407 (2004).
14. E. khalilzadeh, et al, Electron residual energy due to stochastic heating in field-ionized plasma, Phys. Plasmas, 22, 113115 (2015).
15. E. Khalilzadeh, A. Chakhmachi, J. Yazdanpanah, Stochastic behavior of electrons in high intensity laser–plasma interaction, Plasma Phys. Control. Fusion, 59, 125004 (2017).
16. J. Yazdanpanah, A. Anvary, Time and space extended-particle in cell model for electromagnetic particle algorithms, Phys. Plasmas, 19, 033110 (2012).
17. J. Yazdanpanah, A. Anvari, Effects of initially energetic electrons on relativistic laser-driven electron plasma waves, Phys. Plasmas, 21, 023101 (2014).
18. L. Landau, E. Lifshitz, Quantum Mechanics (New York, 1965).
19. J. Yazdanpanah, Self modulation and scattering instability of a relativistic short laser pulse in an underdense plasma, Plasma Phys. Control. Fusion 61, 085021 (2019).
20. P. Sprangle, E. Esarey, A. Ting, Nonlinear theory of intense laser-plasma interactions, Phys. Rev. Lett. 64, 2011 (1990).
21. C.D. Decker, et al, The evolution of ultra‐intense, short‐pulse lasers in underdense plasmas, Phys. Plasmas, 3, 2047 (1996).
22. E. Esarey, et al, Trapping and Acceleration in Self-Modulated Laser Wakefields, Phys. Rev. Lett. 80, 5552 (1998).
Keywords