In cooperation with the Iranian Nuclear Society

Introducing an optimization model for extending the high harmonic spectrum plateau from fluorine molecule

Document Type : Research Paper

Authors

1 Department of Physics, Kharazmi University, P.O. Box: 14911-15719, Tehran - Iran

2 Department of Physics, Sharif University of Technology, P.O. Box: 11365-9567, Tehran - Iran

Abstract
A semi-classical optimization model is introduced for controlling the high-order harmonic generation process and extending the cutoff frequency. This method is capable of defining the driving laser shape interact with the F2 molecule for maximizing the cutoff frequency properly. This optimization procedure is evaluated by examining the high harmonic spectrum from the F­2 molecule irradiated by a two-color laser field. High harmonic spectrum is done using time-dependent density functional theory in a three-dimensional space. The results showed that adding two driving laser pulses with optimization could enhance the cutoff frequency by 96% compared to two driving laser pulses without optimization. In addition, this model for the F2 molecule is capable of reducing the output attosecond pulse duration from 200 as not optimized two-color laser to 135 as the optimized two-color laser.

Highlights

1.       R. Kienberger, et al, Atomic transient recorder, Nature. 427, 817 (2004).

 

2.       A. McPherson, et al, Studies of multiphoton production of vacuumultraviolet radiation in the rare gases, Journal of the Optical Society of America B, 4, 595 (1987).

 

3.       C. Spielmann, et al, Generation of coherent X-rays in the water window using 5-femtosecond laser pulses, Science (80-. ). 278, 661-664 (1997).

 

4.       M.-C. Chen, Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source, Phys. Rev. Lett. 105, 173901 (2010).

 

5.       K. Zhao, et al, Tailoring a 67 attosecond pulse through advantageous phase-mismatch, Opt. Lett. 37, 3891-3893 (2012).

 

6.       M. Lewenstein, et al, Theory of high-harmonic generation by low-frequency laser fields, Phys. Rev. A. 49, 2117 (1994).

 

7.       P.B. Corkum,Plasma perspective on strong field multiphoton ionization, Phys. Rev. Lett. 71, 1994 (1993).

 

8.       Y. Chou, et al, Optimal control of high-order harmonics for the generation of an isolated ultrashort attosecond pulse with two-color midinfrared laser fields, Phys. Rev. A. 91, 63408 (2015).

 

9.       D. Peng, Enhancing high-order harmonic generation by sculpting waveforms with chirp, Phys. Rev. A. 97, 53414 (2018).

 

10.    D. Peng, et al, Enhancing high-order harmonic generation by sculpting waveforms with chirp, Phys. Rev. A, 97, 53414 (2018).

 

11.    Y.S. You, et al, High-harmonic generation in amorphous solids, Nature Communications, 8, 724 (2017).

 

12.    Pengfei Wei1, Candong Liu1, Molecular high harmonic generation in a twocolor field, 18, (11)/ Optics Eepress (2010).

 

13.    I.J. Kim, et al, Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field, Phys. Rev. Lett. 94, 243901 (2005).

 

14.    P. Wei, et al, Selective enhancement of a single harmonic emission in a driving laser field with subcycle waveform control, Phys. Rev. Lett. 110,  233903 (2013).

 

15.    Cornelia Hofmann, Alexandra S. Landsman, Ursula Keller, Disentangling Long Trajectory Contributions in Two-Colour High Harmonic Generation, Appl. Sci. 8, 341 (2018).

 

16.    M. Mofared, E. Irani, R. Sadighi-Bonabi, Enhancing high harmonic generation by the global optimization of a two-color chirped laser fieldPhys. Chem. Chem. Phys. 21, 9302–9309 (2019).

 

17.    X. Andrade, Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems,Phys. Chem. Chem. Phys. 17, 31371–31396 (2015).

Keywords


1.       R. Kienberger, et al, Atomic transient recorder, Nature. 427, 817 (2004).
 
2.       A. McPherson, et al, Studies of multiphoton production of vacuumultraviolet radiation in the rare gases, Journal of the Optical Society of America B, 4, 595 (1987).
 
3.       C. Spielmann, et al, Generation of coherent X-rays in the water window using 5-femtosecond laser pulses, Science (80-. ). 278, 661-664 (1997).
 
4.       M.-C. Chen, Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source, Phys. Rev. Lett. 105, 173901 (2010).
 
5.       K. Zhao, et al, Tailoring a 67 attosecond pulse through advantageous phase-mismatch, Opt. Lett. 37, 3891-3893 (2012).
 
6.       M. Lewenstein, et al, Theory of high-harmonic generation by low-frequency laser fields, Phys. Rev. A. 49, 2117 (1994).
 
7.       P.B. Corkum,Plasma perspective on strong field multiphoton ionization, Phys. Rev. Lett. 71, 1994 (1993).
 
9.       D. Peng, Enhancing high-order harmonic generation by sculpting waveforms with chirp, Phys. Rev. A. 97, 53414 (2018).
 
10.    D. Peng, et al, Enhancing high-order harmonic generation by sculpting waveforms with chirp, Phys. Rev. A, 97, 53414 (2018).
 
11.    Y.S. You, et al, High-harmonic generation in amorphous solids, Nature Communications, 8, 724 (2017).
 
12.    Pengfei Wei1, Candong Liu1, Molecular high harmonic generation in a twocolor field, 18, (11)/ Optics Eepress (2010).
 
13.    I.J. Kim, et al, Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field, Phys. Rev. Lett. 94, 243901 (2005).
 
15.    Cornelia Hofmann, Alexandra S. Landsman, Ursula Keller, Disentangling Long Trajectory Contributions in Two-Colour High Harmonic Generation, Appl. Sci. 8, 341 (2018).
 
16.    M. Mofared, E. Irani, R. Sadighi-Bonabi, Enhancing high harmonic generation by the global optimization of a two-color chirped laser field, Phys. Chem. Chem. Phys. 21, 9302–9309 (2019).