In cooperation with the Iranian Nuclear Society

Investigation of the effect of feed stage and first stage cut on the squared cascade performance to offer an appropriate strategy for separation of tellurium stable isotopes

Document Type : Research Paper

Authors

1 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran-Iran

2 Iran Advanced Technologies Compony, AEOI, P.O.Box: 143995-5931, Tehran-Iran

Abstract
In the present work, the performance of a square cascade in the separation phase of tellurium stable isotopes is studied. In this cascade, the selection of an appropriate feed stage, the first stage cut, and the cut of the cascade are the effective parameters. The results showed that in the various separation factors, selection of the middle feed stage leads to appropriate results. Also, if the cut of the first stage is selected in such a way that the cuts of stripping section are obtained the same, it is one of the cut-offs for which the two grouping parameters of components will have the highest possible value. Based on the selection of this cut, one of the possible strategies available through using the code-named SQCASSIM for the separation of tellurium stable isotopes to the enrichment of more than 90% is presented.

Highlights

1. A.G. Kudziev, Production and Application of Stable Enriched Isotopes in the USSR, Nucl. Instrum. Methods Phys. Res., Sect. A, 282, 267-270 (1989).

 

2. D.E. Armstrong, et al, A Carbon-13 Production Plant Using Carbon Monoxide Distillation, Los Alamos Scientific Laboratory Report (1968).

 

3. E.I. Abbakumov, Development and Industrial Use of Gas Centrifuge for Uranium Enrichment in the Soviet Union, Atomic Energy, 67(4), 255-257 (1989).

 

4. F. Mansourzadeh, et al, Comparison of Optimum Tapered Cascade and Optimal Square Cascade for Separation of Xenon Isotopes Using Enhanced TLBO AlgorithmSep. Sci. Technol., 53(13), 2074–2087 (2018).

 

5. F. Mansourzadeh, et al, Utilization of Harmony Search Algorithm to Optimize a Cascade for Separating Multicomponent Mixtures, Prog. Nucl. Energy, 111, 165-173 (2019).

 

6. F. Mansourzadeh, Performance comparison of match abundance ratio cascade with optimal conditions for the separation of stable xenon isotopes, J. of Nucle. Sci. and Tech., 94(4), 74-83 (2021) (In Persian).

 

7. F. Mansourzadeh, Investigation of the cut on the separation of xenon stable isotopes in the square cascade, J. of Nucle. Sci. and Tech., 95(1), 73-81 (2021) (In Persian).

 

8. A. De La Garza, G.A. Garret, J.E. Murphy, Multicomponent Isotope Separation in Cascade, Chem. Eng. Sci. 15, 188-209 (1961).

 

9. R.M.V. Kucherov, Theory of cascade for separating multi-component isotope mixturesAt. Energy, 19(4), 1290–1300 (1965).

 

10. Y. Zhang, S. Zeng, Comparison of Three Model Cascades, At. Energ. Sci. Tech., 48(11), 1921-1927 (2014).

 

11. S. Zeng, C. Ying, A Method of Separating a Middle Component in Multicomponent Isotope Mixtures by Gas Centrifuge Cascades, Sep. Sci. Technol., 35(14), 2173–2186 (2000).

 

12. A.Y. Smirnov, G.A. Sulaberidze, Features of Mass Transfer of Intermediate Components in Square Gas Centrifuge Cascade for Separating Multicomponent Mixtures, Theor. Found. Chem. Eng., 48(5), 629-636 (2014).

 

13. L.Y. Sosnin, et al, Centrifugal Extraction of Highly Enriched 120Te and 122Te Using the Non-Steady State Method of SeparationNucl. Instrum. Methods Phys. Res., Sect. A, 480, 36-39 (2002).

 

14. L.Y. Sosnin, A.N. Tcheltsov, Centrifugal Extraction of Highly Enriched 123Te for the Production of 123I at A Cyclotron, Nucl, Instrum. Methods Phys. Res., Sect. A, 438, 14-19 (1999).

 

15. I.A. Suvorov, A.N. Tcheltsov, Enrichment of Tellurium Isotopes for Pure 123I Production Using Gas Ultra-Centrifuges, Nucl. Instrum. Methods Phys. Res., Sect. A, 334, 33-36 (1993).

 

16. S. Zeng, G. Ying, A robust and efficient calculation Procedure for Determining Concentration Distribution of Multicomponent MixturesSep. Sci. Tech, 35(4), 613-622 (2000).

Keywords


1. A.G. Kudziev, Production and Application of Stable Enriched Isotopes in the USSR, Nucl. Instrum. Methods Phys. Res., Sect. A, 282, 267-270 (1989).
 
2. D.E. Armstrong, et al, A Carbon-13 Production Plant Using Carbon Monoxide Distillation, Los Alamos Scientific Laboratory Report (1968).
 
3. E.I. Abbakumov, Development and Industrial Use of Gas Centrifuge for Uranium Enrichment in the Soviet Union, Atomic Energy, 67(4), 255-257 (1989).
 
4. F. Mansourzadeh, et al, Comparison of Optimum Tapered Cascade and Optimal Square Cascade for Separation of Xenon Isotopes Using Enhanced TLBO Algorithm, Sep. Sci. Technol., 53(13), 2074–2087 (2018).
 
5. F. Mansourzadeh, et al, Utilization of Harmony Search Algorithm to Optimize a Cascade for Separating Multicomponent Mixtures, Prog. Nucl. Energy, 111, 165-173 (2019).
 
6. F. Mansourzadeh, Performance comparison of match abundance ratio cascade with optimal conditions for the separation of stable xenon isotopes, J. of Nucle. Sci. and Tech., 94(4), 74-83 (2021) (In Persian).
 
7. F. Mansourzadeh, Investigation of the cut on the separation of xenon stable isotopes in the square cascade, J. of Nucle. Sci. and Tech., 95(1), 73-81 (2021) (In Persian).
 
8. A. De La Garza, G.A. Garret, J.E. Murphy, Multicomponent Isotope Separation in Cascade, Chem. Eng. Sci. 15, 188-209 (1961).
 
9. R.M.V. Kucherov, Theory of cascade for separating multi-component isotope mixtures, At. Energy, 19(4), 1290–1300 (1965).
 
10. Y. Zhang, S. Zeng, Comparison of Three Model Cascades, At. Energ. Sci. Tech., 48(11), 1921-1927 (2014).
 
11. S. Zeng, C. Ying, A Method of Separating a Middle Component in Multicomponent Isotope Mixtures by Gas Centrifuge Cascades, Sep. Sci. Technol., 35(14), 2173–2186 (2000).
 
12. A.Y. Smirnov, G.A. Sulaberidze, Features of Mass Transfer of Intermediate Components in Square Gas Centrifuge Cascade for Separating Multicomponent Mixtures, Theor. Found. Chem. Eng., 48(5), 629-636 (2014).
 
13. L.Y. Sosnin, et al, Centrifugal Extraction of Highly Enriched 120Te and 122Te Using the Non-Steady State Method of Separation, Nucl. Instrum. Methods Phys. Res., Sect. A, 480, 36-39 (2002).
 
14. L.Y. Sosnin, A.N. Tcheltsov, Centrifugal Extraction of Highly Enriched 123Te for the Production of 123I at A Cyclotron, Nucl, Instrum. Methods Phys. Res., Sect. A, 438, 14-19 (1999).
 
15. I.A. Suvorov, A.N. Tcheltsov, Enrichment of Tellurium Isotopes for Pure 123I Production Using Gas Ultra-Centrifuges, Nucl. Instrum. Methods Phys. Res., Sect. A, 334, 33-36 (1993).
 
16. S. Zeng, G. Ying, A robust and efficient calculation Procedure for Determining Concentration Distribution of Multicomponent Mixtures, Sep. Sci. Tech, 35(4), 613-622 (2000).