In cooperation with the Iranian Nuclear Society

Design and optimization of photoneutron target for use in a new generation of accelerator driven subcritical reactors

Document Type : Research Paper

Authors

1 Department of Physics, Faculty of Science, University of Birjand, P.O.BOX: 9717434765, Birjand - Iran

2 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran, Iran

Abstract
Because of many special benefits of the Small Modular Reactors (SMRs) and the Accelerator Driven Subcritical Reactors (ADSRs), they are subject of a large number of studies all over the world. In the present work, the ADS photoneutron target for Holos reactor was designed and optimized by using MCNPX2.6 code. The Continuous Slowing Down Approximation (CSDA) ranges of passing electrons through tantalum, tungsten, mercury, lead and lead-bismuth were investigated. The production and leakage rates for neutrons and photons, and therefore, the deposited heat from neutrons and photons were calculated considering the electron beam bombardment of tantalum, tungsten, mercury, lead and lead-bismuth targets at beam energies of 100–1000 MeV. Other factors such as the optimization of photoneutron target dimensions for 20 and 200 MeV electron beams, and choosing of the optimal energy of incident electrons for the optimized photoneutron target were examined.

Highlights

1. H. Nifenecker, et al. Basics of accelerator driven subcritical reactorsNucl Instrum Meth, A.463, 428 (2001).

 

2. R. Sheffield, et al. Accelerator and spallation target technologies for ADS applications. Nuclear Energy Agency, Nuclear Science Status Report (2005).

 

3. S.B. Degweker, et al. The physics of accelerator driven sub-critical reactors, Pramana J.Phys.68, 161 (2007).

 

4. IAEA, Nuclear Fuel Cycle. Material Section. Thorium fuel cycle-potential benefits and challenges-IAEA-Tecdoc-1450.Technical Report, IAEA, International Atomic Energy Agency, (2005).

 

5. M. Tatari, A.H. Ranjbar, Design of a photoneutron source based on 10 MeV electrons of radiotherapy linac, Annals of Nuclear Energy. 63, 69 (2014).

 

6. D. Ridikas, H. Safa , M-L. Giacri, Conceptual study of neutron irradiator-driven by electron accelerator, CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette, France.

 

7. M. Hassanzadeh, S.A.H. Feghhi, Analysis of burn up effects on kinetic parameters in an Accelerator Driven Subcritical TRIGA reactor, Annals of Nuclear Energy. 62, 280 (2013).

 

8. M. Amirkhani, M. Hassanzadeh, Neutronic Investigation of Fissionable Spallation Targets in Accelerator Driven Systems, Journal of Nuclear Science and Technology (Jonsat). 38, 81, 13 (2017) (In persian).

 

9. Y.L. Zhang, et al. Study on the Parameters of the ADS Spallation Target, J. Phys. Conf. Ser. 420, 012064 (2013).

 

10. Mario Carta et al. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power, Physor-2006, (2006).

 

11. David Sean O'Kelly, PHD thesisThe University of Texas at Austin, (2008).

 

12. Didi, Abdessamad et al. Neutron flux distribution in (Pb, Ta and W) target using accelera-tor of 18 MeV electron beam, Eurasian Journal of Physics and Functional Materials. 2, 2, 129 (2018).

 

13. Kazuaki Kosako, et al. Angular Distribution of Photoneutrons from Copper and Tungsten Targets Bombarded by 18, 28, and 38 MeV Electrons, J. Nucl. Sci. Technol. 48, 227 (2011).
 
14. W.L. Huang, et al. Measurements of photoneutrons produced by a 15 MeV electron linac for radiography applications, Nucl. Instrum. Methods Phys. Res., B. 251, 361 (2006).

 

15. F. Torabi, S.F. Masoudi, F. Rahmani, Photoneutron production by a 25 MeV electron linac for BNCT application, Ann. Nucl. Energy. 54, 192 (2013).

 

16. W.L. Huang, Q.F. Li, Y.Z. Lin, Calculation of photo neutrons produced in the targets of electron linear accelerators for radiography and radiotherapy applications, Nucl. Instrum. Methods Phys. Res., B. 229, 339 (2005).

 

17. Daniel T Ingersoll, Small Modular Reactors: Nuclear Power Fad or Future?, 1st ed. (Woodhead Publishing, USA, 2015).

 

18. Holos Generators, http://www.holosgen.com/.

 

19. Denise, B. Pelowitz, MCNPX User’s Manual Version 2.6. 0, April 2008. LACP-07-1473, LANL, (2008).

 

20. Graiciany P. Barros, et al. Neutron production evaluation from a ADS target utilizing the MCNPX 2.6.0 code, Braz. J. Phys. 40, 414 (2010).

 

21. P.L. Kirillov, Thermophysical Properties of Materials For Nuclear Engineering: A Tutorial and Collection of Data, 3rd ed. (Obninsk), (2008).

 

22. Y. Kadi, J.P. Revol, Design of an Accelerator-Driven System for the Destruction of Nuclear Waste, 1st ed. (European Organization for Nuclear Research, CERN, Geneva, Switzerland, 2001).

 

23. A.O. Hanson, et al. Thresholds for Photo-Neutron Reactions in Mn, Zn, Zr, Mo, Cd, Pr, Nd, Au, Hg, Tl and Pb, American Physical Society (APS). 76, 578 (1949).

 

24. K.M. Eshwarappa, et al. Estimation of photoneutron yield from beryllium target irradiated by variable energy microtron-based bremsstrahlung radiationNucl Instrum Meth A.540, 412 (2005).

 

25. Anshu Saxena, S.K. Rathi, A.S. Verma, Continuous Slowing Down Approximation (CSDA) ranges of electrons for biomedical materials, Elixir Bio. Phys. 37, 3860 (2011).

 

26. M.J. Berger, et. al., Stopping-power and range tables for electrons, protons, and helium ions, http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html, (ESTAR database), (1998).

Keywords


1. H. Nifenecker, et al. Basics of accelerator driven subcritical reactors, Nucl Instrum Meth, A.463, 428 (2001).
 
2. R. Sheffield, et al. Accelerator and spallation target technologies for ADS applications. Nuclear Energy Agency, Nuclear Science Status Report (2005).
 
3. S.B. Degweker, et al. The physics of accelerator driven sub-critical reactors, Pramana J.Phys.68, 161 (2007).
 
4. IAEA, Nuclear Fuel Cycle. Material Section. Thorium fuel cycle-potential benefits and challenges-IAEA-Tecdoc-1450.Technical Report, IAEA, International Atomic Energy Agency, (2005).
 
5. M. Tatari, A.H. Ranjbar, Design of a photoneutron source based on 10 MeV electrons of radiotherapy linac, Annals of Nuclear Energy. 63, 69 (2014).
 
6. D. Ridikas, H. Safa , M-L. Giacri, Conceptual study of neutron irradiator-driven by electron accelerator, CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette, France.
 
7. M. Hassanzadeh, S.A.H. Feghhi, Analysis of burn up effects on kinetic parameters in an Accelerator Driven Subcritical TRIGA reactor, Annals of Nuclear Energy. 62, 280 (2013).
 
8. M. Amirkhani, M. Hassanzadeh, Neutronic Investigation of Fissionable Spallation Targets in Accelerator Driven Systems, Journal of Nuclear Science and Technology (Jonsat). 38, 81, 13 (2017) (In persian).
 
9. Y.L. Zhang, et al. Study on the Parameters of the ADS Spallation Target, J. Phys. Conf. Ser. 420, 012064 (2013).
 
10. Mario Carta et al. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power, Physor-2006, (2006).
 
11. David Sean O'Kelly, PHD thesis, The University of Texas at Austin, (2008).
 
12. Didi, Abdessamad et al. Neutron flux distribution in (Pb, Ta and W) target using accelera-tor of 18 MeV electron beam, Eurasian Journal of Physics and Functional Materials. 2, 2, 129 (2018).
 
13. Kazuaki Kosako, et al. Angular Distribution of Photoneutrons from Copper and Tungsten Targets Bombarded by 18, 28, and 38 MeV Electrons, J. Nucl. Sci. Technol. 48, 227 (2011).
 
14. W.L. Huang, et al. Measurements of photoneutrons produced by a 15 MeV electron linac for radiography applications, Nucl. Instrum. Methods Phys. Res., B. 251, 361 (2006).
 
15. F. Torabi, S.F. Masoudi, F. Rahmani, Photoneutron production by a 25 MeV electron linac for BNCT application, Ann. Nucl. Energy. 54, 192 (2013).
 
16. W.L. Huang, Q.F. Li, Y.Z. Lin, Calculation of photo neutrons produced in the targets of electron linear accelerators for radiography and radiotherapy applications, Nucl. Instrum. Methods Phys. Res., B. 229, 339 (2005).
 
17. Daniel T Ingersoll, Small Modular Reactors: Nuclear Power Fad or Future?, 1st ed. (Woodhead Publishing, USA, 2015).
 
18. Holos Generators, http://www.holosgen.com/.
 
19. Denise, B. Pelowitz, MCNPX User’s Manual Version 2.6. 0, April 2008. LACP-07-1473, LANL, (2008).
 
20. Graiciany P. Barros, et al. Neutron production evaluation from a ADS target utilizing the MCNPX 2.6.0 code, Braz. J. Phys. 40, 414 (2010).
 
21. P.L. Kirillov, Thermophysical Properties of Materials For Nuclear Engineering: A Tutorial and Collection of Data, 3rd ed. (Obninsk), (2008).
 
22. Y. Kadi, J.P. Revol, Design of an Accelerator-Driven System for the Destruction of Nuclear Waste, 1st ed. (European Organization for Nuclear Research, CERN, Geneva, Switzerland, 2001).
 
23. A.O. Hanson, et al. Thresholds for Photo-Neutron Reactions in Mn, Zn, Zr, Mo, Cd, Pr, Nd, Au, Hg, Tl and Pb, American Physical Society (APS). 76, 578 (1949).
 
24. K.M. Eshwarappa, et al. Estimation of photoneutron yield from beryllium target irradiated by variable energy microtron-based bremsstrahlung radiation, Nucl Instrum Meth A.540, 412 (2005).
 
25. Anshu Saxena, S.K. Rathi, A.S. Verma, Continuous Slowing Down Approximation (CSDA) ranges of electrons for biomedical materials, Elixir Bio. Phys. 37, 3860 (2011).
 
26. M.J. Berger, et. al., Stopping-power and range tables for electrons, protons, and helium ions, http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html, (ESTAR database), (1998).