In cooperation with the Iranian Nuclear Society

Dosimetry calculations of 166Dy/166Ho –Chitosan in vivo generator using GEANT4 and MCNPX

Document Type : Research Paper

Authors

1 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran-Iran

2 Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 1339-14155, Tehran - Iran

Abstract
The Holmium-166 radionuclide is one of the most effective radionuclides used to treat bone marrow cancer and rheumatoid arthritis. Among the recommended radionuclides used in radiation synovectomy, 166Ho has got much attention due to suitable decay properties such as short half-life, its high beta energy, gamma-ray emission with suitable energy for nuclear imaging, and the possibility of large-scale production in medium flux reactor. One method to deliver 166Ho to the target tissue is via the 166Dy/166Ho-Chitosan in vivo generator. Compared with other similar radiopharmaceuticals, using the in vivo generator to deliver 166Ho, causes minimal non-target tissue exposure and increased absorbed dose in the target tissue. In this work, the absorbed dose of 166Dy/166Ho-Chitosan radio-complex for radio-synovectomy purposes was calculated by GEANT4 and MCNPX. The obtained results were compared with each other. In addition, the dosimetry results of the mentioned radio-complex have been compared with the common radio complexes used for radio-synovectomy.

Highlights

1. E. Dadachova, et al., Separation of carrier-free166Ho from Dy2O3 targets by partition chromatography and electrophoresis, J. Radioanal. Nucl. Ch. 199, 115 (1995).
 
2. R.J. Mumper, U.Y. Ryo, M. Jay, Neutron-Activated Holmium- 166-Poly (L-LacticAcid) Microspheres: A Potential Agent for the Internal Radiation Therapy of Hepatic Tumors, J. Nucl. Med. (1991).
 
3. Turner JH, et al., 166Ho-microsphere liver radiotherapy: a preclinical SPECT dosimetry study in the pig, Nucl. Med. Commun. 15, 545 (1994).
 
4. M.R.A. Pillai, Metallic Radionuclides and Therapeutic Radiopharmaceuticals, (2010).
 
5. Susanta Lahiri, Kees J. Volkers, B. Wierczinski, Production of 166Ho through 164Dy(n,g) 165Dy(n,g) 166Dy(b) 166Ho and separation of 166Ho, Appl. Radiat. Isot. 61, 1157 (2004).
 
6. L. F. Mausner, R. F. Straub, and S. C. Srivastava, The in vivo generator for radioimmunotherapy, J. Label Compd Radiopharm. 26, 498 (1989).
 
7. D. Ma, et al., Development of the Dy-166/Ho-166 in-vivo generator for radionuclide radiotherapy, 205th ACS national meeting, 26 (1993).
 
8. S. Mirzadeh, K. Kumar, O.A. Gansow, The Chemical Fate of 212Bi-DOTA Formed by β-Decay of 212Pb (DOTA), Radiochimca Acta. 60, 1 (1993).
 
9. Mirzadeh, ORNL Nuclear Medicine Program Progress Report, ORNL/TM-12159. 6 (1992).
 
10. Mirzadeh, ORNL Nuclear Medicine Program Progress Report, ORNL/TM-12485. 12 (1993b).
 
11. S.V. Smith, et al., [166Dy] Dysprosium/[166Ho] Holmium In Vivo Generator, APPI. Radiat. Hot. 46, 759 (1995).
 
12. J.R. Zeevaart, et al., Recoil and conversion electron implications to be taken into account in the design of therapeutic radiopharmaceuticals utilizing in vivo generators, J. Label Compd Radiopharm. 55, 115 (2012).
 
13. Evseev, Ivan G., et al., Comparison of SRIM, MCNPX and GEANT simulations with experimental data for thick Al absorbers, Appl. Radiat. Isot. 68, 948 (2010).
 
14. H. Safigholi, William Y. Song, Calculation of water equivalent ratios for various materials at proton energies ranging 10–500 MeV using MCNP, FLUKA, and GEANT4 Monte Carlo codes, Phys. Med. Biol. 63. 15 (2018).
 
15. Newhauser, Wayne D., et al., Benchmark measurements and simulations of dose perturbations due to metallic spheres in proton beams, Radiat. Meas. 58. 37 (2013).
 
16. S. Vosoughi, A.R. Jalilian, Simindokht Shirvani-Arani, et al. Preparation of 166 Dy/166 Ho-chitosan as an in vivo generator for radiosynovectomy. J. Radioanal. Nucl. Chem. 311. 3 (2017).
 
17. L. Johnson, et al., Beta-particle dosimetry in radiation synovectomy, Eur J Nucl Med Mol., 22, 977 (1995).
 
18. J. Villarreal-Barajas, G. Ferro-Flores, O. Hernandez-Oviedo, Experimental validation of Monte Carlo depth-dose calculations using radiochromic dye film dosimetry for a beta-gamma 153Sm radionuclide applied to the treatment of rheumatoid arthritis, Radiat. Prot. Dosim. 101, 439 (2002).
 
19. T. André, et al., Comparison of Geant4-DNA simulation of S-values with other Monte Carlo codes, Nucl Instrum Meth B: Beam Interactions with Materials and Atoms. 319, 87 (2014).
 
20. M. Bardies, J.-F. Chatal, Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides: beta dosimetry of small spheres, Phys. Med. Biol. 39, 961 (1994).
 
21. M. Wu Junxiang, et al., Monte Carlo dosimetry of a new 90Y brachytherapy source, J. Contemp Brachy-therapy. 7, 397 (2015).
 
22 T. Shi-Biao, et al., Geant4 used in medical physics and hadrontherapy technique, Nucl. Sci. Tech. 17, 276 (2006).
 
23. Z. Rahman, et al., Absorbed dose estimations of 131I for critical organs using the GEANT4 Monte Carlo simulation code, Chin Phys C. 36, 1150 (2012).
 
24. L. Maigne, et al. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV, Phys Med Biol. 56, 811(2011).
 
25. D. Sarrut, et al., A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications, J. Med. Phys. 41, 064301 (2014).
 
26. H. Uusijärvi, et al., Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN, Cancer Biother Radiopharm. 24, 461 (2009).
 
27. A.I. Kassis, S.J. Adelstein, Considerations in the selection of radionuclides for cancer therapy, Handbook of Radiopharmaceuticals: Radiochemistry and Applications, 767 (2003).

Keywords


 
1. E. Dadachova, et al., Separation of carrier-free166Ho from Dy2O3 targets by partition chromatography and electrophoresis, J. Radioanal. Nucl. Ch. 199, 115 (1995).
 
2. R.J. Mumper, U.Y. Ryo, M. Jay, Neutron-Activated Holmium- 166-Poly (L-LacticAcid) Microspheres: A Potential Agent for the Internal Radiation Therapy of Hepatic Tumors, J. Nucl. Med. (1991).
 
3. Turner JH, et al., 166Ho-microsphere liver radiotherapy: a preclinical SPECT dosimetry study in the pig, Nucl. Med. Commun. 15, 545 (1994).
 
4. M.R.A. Pillai, Metallic Radionuclides and Therapeutic Radiopharmaceuticals, (2010).
 
5. Susanta Lahiri, Kees J. Volkers, B. Wierczinski, Production of 166Ho through 164Dy(n,g) 165Dy(n,g) 166Dy(b) 166Ho and separation of 166Ho, Appl. Radiat. Isot. 61, 1157 (2004).
 
6. L. F. Mausner, R. F. Straub, and S. C. Srivastava, The in vivo generator for radioimmunotherapy, J. Label Compd Radiopharm. 26, 498 (1989).
 
7. D. Ma, et al., Development of the Dy-166/Ho-166 in-vivo generator for radionuclide radiotherapy, 205th ACS national meeting, 26 (1993).
 
8. S. Mirzadeh, K. Kumar, O.A. Gansow, The Chemical Fate of 212Bi-DOTA Formed by β-Decay of 212Pb (DOTA), Radiochimca Acta. 60, 1 (1993).
 
9. Mirzadeh, ORNL Nuclear Medicine Program Progress Report, ORNL/TM-12159. 6 (1992).
 
10. Mirzadeh, ORNL Nuclear Medicine Program Progress Report, ORNL/TM-12485. 12 (1993b).
 
11. S.V. Smith, et al., [166Dy] Dysprosium/[166Ho] Holmium In Vivo Generator, APPI. Radiat. Hot. 46, 759 (1995).
 
12. J.R. Zeevaart, et al., Recoil and conversion electron implications to be taken into account in the design of therapeutic radiopharmaceuticals utilizing in vivo generators, J. Label Compd Radiopharm. 55, 115 (2012).
 
13. Evseev, Ivan G., et al., Comparison of SRIM, MCNPX and GEANT simulations with experimental data for thick Al absorbers, Appl. Radiat. Isot. 68, 948 (2010).
 
14. H. Safigholi, William Y. Song, Calculation of water equivalent ratios for various materials at proton energies ranging 10–500 MeV using MCNP, FLUKA, and GEANT4 Monte Carlo codes, Phys. Med. Biol. 63. 15 (2018).
 
15. Newhauser, Wayne D., et al., Benchmark measurements and simulations of dose perturbations due to metallic spheres in proton beams, Radiat. Meas. 58. 37 (2013).
 
16. S. Vosoughi, A.R. Jalilian, Simindokht Shirvani-Arani, et al. Preparation of 166 Dy/166 Ho-chitosan as an in vivo generator for radiosynovectomy. J. Radioanal. Nucl. Chem. 311. 3 (2017).
 
17. L. Johnson, et al., Beta-particle dosimetry in radiation synovectomy, Eur J Nucl Med Mol., 22, 977 (1995).
 
18. J. Villarreal-Barajas, G. Ferro-Flores, O. Hernandez-Oviedo, Experimental validation of Monte Carlo depth-dose calculations using radiochromic dye film dosimetry for a beta-gamma 153Sm radionuclide applied to the treatment of rheumatoid arthritis, Radiat. Prot. Dosim. 101, 439 (2002).
 
19. T. André, et al., Comparison of Geant4-DNA simulation of S-values with other Monte Carlo codes, Nucl Instrum Meth B: Beam Interactions with Materials and Atoms. 319, 87 (2014).
 
20. M. Bardies, J.-F. Chatal, Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides: beta dosimetry of small spheres, Phys. Med. Biol. 39, 961 (1994).
 
21. M. Wu Junxiang, et al., Monte Carlo dosimetry of a new 90Y brachytherapy source, J. Contemp Brachy-therapy. 7, 397 (2015).
 
22 T. Shi-Biao, et al., Geant4 used in medical physics and hadrontherapy technique, Nucl. Sci. Tech. 17, 276 (2006).
 
23. Z. Rahman, et al., Absorbed dose estimations of 131I for critical organs using the GEANT4 Monte Carlo simulation code, Chin Phys C. 36, 1150 (2012).
 
24. L. Maigne, et al. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV, Phys Med Biol. 56, 811(2011).
 
25. D. Sarrut, et al., A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications, J. Med. Phys. 41, 064301 (2014).
 
26. H. Uusijärvi, et al., Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN, Cancer Biother Radiopharm. 24, 461 (2009).
 
27. A.I. Kassis, S.J. Adelstein, Considerations in the selection of radionuclides for cancer therapy, Handbook of Radiopharmaceuticals: Radiochemistry and Applications, 767 (2003).