In cooperation with the Iranian Nuclear Society

Evaluation of X-ray dose distribution in adult male and female organs due to plasma focus device function

Document Type : Research Paper

Authors

1 Physics Department, Payame Noor University, P.O. Box: 19395-3697, Tehran- Iran

2 Physics Department, Basic Science Faculty, Imam Khomeini International University, P.O.Box: 34148-96818, Qazvin – Iran

3 Nuclear Engineering Department, Physics and Energy Faculty, Amirkabir University of Technology, P.O. Box: 159163-4311, Tehran - Iran

Abstract
The X-ray dose and hard X-ray spectrum corresponding to a 2.5 kJ plasma focus device were investigated in the present work. The X-ray dose using Argon gas at a pressure of 0.8 mbar and a distance of 23 cm from the top of the anode was 0.8 mSv per shot. Using the ORNL phantom simulated on the natural human body, an X-ray absorption dose was computed for soft tissue organs at specific distances from the device. The maximum absorbed dose was related to the length of 30 cm for the testis in the male phantom (2.0890×10-14 mGy) and the bladder and contents in the female phantom (2.6613×10-15 mGy). In addition, at the distance of 230 cm, the maximum absorbed dose was in the testis in the male phantom
(3.5601×10-16 mGy) and in the skin for the female phantom (1.1004×10-16 mGy)

Highlights

1.   J.W. Mather, Formation of a highdensity deuterium plasma focusThe Physics of Fluids, 8(2), 366-377 (1965).
 
2.   S. Kalaiselvi, et al., Optimization of neon soft X-rays emission from 200 J fast miniature dense plasma focus device: A potential source for soft X-ray lithography, Physics Letters A, 377(18), 1290-1296 (2013).
 
3.   P. Knoblauch, et al., Hard X-ray dosimetry of a plasma focus suitable for industrial radiographyRadiation Physics and Chemistry, 145, 39-42 (2018).
 
4.   L. Mahe, Soft X-rays from compact plasma focusPhD, School of Science, Nanyang Technological University, Singapore, (1996).
 
5. M. Noonbede, et al., MCNP dose analysis for the iranian plasma focus neutron sourceJournal of Fusion Energy, 34(2), 315-319 (2015).
 
6.   F. Rahmani, Dose Calculation for Radiation Safety Assessment of Plasma Focus 2.5 kJ, Journal of Fusion Energy, 35(2), 378-384 (2016).
 
7.   H. Van Paassen, R. Vandre, R.S. White, XRay Spectra from Dense Plasma Focus DevicesThe Physics of Fluids, 13(10), 2606-2612 (1970).
 
8.   M. Sohrabi, Z. Soltani, M. Habibi, Hydrogen ion emission studies in 4π plasma focus device spaceRadiation Physics and Chemistry, 108836 (2020).
 
9.   M. Sohrabi, M. Habibi, V. Ramezani, Helium ion distributions in a 4 kJ plasma focus device by 1 mm-thick large-size polycarbonate detectors, Physics Letters A, 378(48), 3631-3637 (2014).
 
10. A.     Kanani, et al., Hard X-ray dose intensity and spatial distribution in a plasma focus device using thermoluminescence dosimetersPramana, 85(1),  149-159 (2015).
 
11. J. Hubbell, S. Seltzer, X-ray mass attenuation coefficients, NIST Standard Reference Database 126. 2004. (2019).

 

12. V. Raspa, et al., Plasma focus as a powerful hard X-ray source for ultrafast imaging of moving metallic objects, Brazilian Journal of Physics, 34(4B), 1696-1699 (2004).
 
13. G. El-Aragi, et al., Scattered ionizing radiations from low-energy focus plasma and radiation dosimetery assessmentPramana, 75(4), 727-736 (2010).
 
14. D.B. Pelowitz, MCNPX user’s manual, version 2.6. 0, LA-CP-07-1473Los Alamos National Laboratory, Los Alamos (NM), (2008).
 
15. D. Krstić, D. Nikezić, Input files with ORNL—mathematical phantoms of the human body for MCNP-4B, Computer Physics Communications, 176(1), 33-37 (2007).
 
16. J. Ali, Development and studies of a small plasma focus, PhD thesis, University Technology Malaysia, Kuala Lumpur, Malaysia (1990).
 
17. S.      Lee, A. Serban, Dimensions and lifetime of the plasma focus pinch, IEEE Transactions on Plasma Science, 24(3), 1101-1105 (1996).
 
18. S. Hussain, et al., Comparative studies of X-ray emission from a plasma focus with different metal inserts at the anode tipPhysics Letters A, 349(1-4), 236-244 (2006).
 
19. M. Khan, et al., Imperative function of electron beams in low-energy plasma focus devicePramana, 85(6), 1207-1219 (2015).
 
20. R. Smith, A. Martell, R. Motekaitis, NIST standard reference database 46NIST Critically Selected Stability Constants of Metal Complexes Database Ver, (2004. 2).
 
21. V. Raspa, et al., Plasma focus based flash hard X-ray source in the 100 keV region with reproducible spectrumPhysics Letters A, 374(46), 4675-4677 (2010).
 
22. M.A. Tafreshi, E. Saeedzadeh, Studies of the hard X-ray emission from the Filippov type plasma focus device, Dena, Journal of Fusion Energy, 25(3), 207-211 (2006).

 

 

Keywords


 
1.   J.W. Mather, Formation of a highdensity deuterium plasma focus. The Physics of Fluids, 8(2), 366-377 (1965).
 
2.   S. Kalaiselvi, et al., Optimization of neon soft X-rays emission from 200 J fast miniature dense plasma focus device: A potential source for soft X-ray lithography, Physics Letters A, 377(18), 1290-1296 (2013).
 
3.   P. Knoblauch, et al., Hard X-ray dosimetry of a plasma focus suitable for industrial radiography, Radiation Physics and Chemistry, 145, 39-42 (2018).
 
4.   L. Mahe, Soft X-rays from compact plasma focus, PhD, School of Science, Nanyang Technological University, Singapore, (1996).
 
5. M. Noonbede, et al., MCNP dose analysis for the iranian plasma focus neutron source, Journal of Fusion Energy, 34(2), 315-319 (2015).
 
6.   F. Rahmani, Dose Calculation for Radiation Safety Assessment of Plasma Focus 2.5 kJ, Journal of Fusion Energy, 35(2), 378-384 (2016).
 
7.   H. Van Paassen, R. Vandre, R.S. White, XRay Spectra from Dense Plasma Focus Devices, The Physics of Fluids, 13(10), 2606-2612 (1970).
 
8.   M. Sohrabi, Z. Soltani, M. Habibi, Hydrogen ion emission studies in 4π plasma focus device space, Radiation Physics and Chemistry, 108836 (2020).
 
9.   M. Sohrabi, M. Habibi, V. Ramezani, Helium ion distributions in a 4 kJ plasma focus device by 1 mm-thick large-size polycarbonate detectors, Physics Letters A, 378(48), 3631-3637 (2014).
 
10. A.     Kanani, et al., Hard X-ray dose intensity and spatial distribution in a plasma focus device using thermoluminescence dosimeters, Pramana, 85(1),  149-159 (2015).
 
11. J. Hubbell, S. Seltzer, X-ray mass attenuation coefficients, NIST Standard Reference Database 126. 2004. (2019).
 
12. V. Raspa, et al., Plasma focus as a powerful hard X-ray source for ultrafast imaging of moving metallic objects, Brazilian Journal of Physics, 34(4B), 1696-1699 (2004).
 
13. G. El-Aragi, et al., Scattered ionizing radiations from low-energy focus plasma and radiation dosimetery assessment, Pramana, 75(4), 727-736 (2010).
 
14. D.B. Pelowitz, MCNPX user’s manual, version 2.6. 0, LA-CP-07-1473. Los Alamos National Laboratory, Los Alamos (NM), (2008).
 
15. D. Krstić, D. Nikezić, Input files with ORNL—mathematical phantoms of the human body for MCNP-4B, Computer Physics Communications, 176(1), 33-37 (2007).
 
16. J. Ali, Development and studies of a small plasma focus, PhD thesis, University Technology Malaysia, Kuala Lumpur, Malaysia (1990).
 
17. S.      Lee, A. Serban, Dimensions and lifetime of the plasma focus pinch, IEEE Transactions on Plasma Science, 24(3), 1101-1105 (1996).
 
18. S. Hussain, et al., Comparative studies of X-ray emission from a plasma focus with different metal inserts at the anode tip, Physics Letters A, 349(1-4), 236-244 (2006).
 
19. M. Khan, et al., Imperative function of electron beams in low-energy plasma focus device, Pramana, 85(6), 1207-1219 (2015).
 
20. R. Smith, A. Martell, R. Motekaitis, NIST standard reference database 46, NIST Critically Selected Stability Constants of Metal Complexes Database Ver, (2004. 2).
 
21. V. Raspa, et al., Plasma focus based flash hard X-ray source in the 100 keV region with reproducible spectrum, Physics Letters A, 374(46), 4675-4677 (2010).
 
22. M.A. Tafreshi, E. Saeedzadeh, Studies of the hard X-ray emission from the Filippov type plasma focus device, Dena, Journal of Fusion Energy, 25(3), 207-211 (2006).