In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

1 Department of Nuclear Physics, Faculty of Sciences, University of Mazandaran, P.O.BOX: 47417-416, Babolsar, Iran

2 Department of Physics, Faculty of Sciences, University of Guilan, P.O.BOX: 41635-1914, Rasht, Iran

Abstract

Due to the unique properties of carbons in depth-dose deposition, this study investigated the carbon therapy of brain tumors using the Geant4 toolkit. To see the effect of phantom material on the dose calculations, three phantoms consisting of realistic brain tissue, soft tissue, and water were considered. The spherical tumor was considered at the center of the brain and the Bragg peak was calculated at the center of the tumor. The dose deposition in depth was different for all three phantoms, so that this difference is about 3 mm for the Bragg peak in the brain phantom and soft tissue phantom, and about 4 mm for the Bragg peak in the soft tissue and water. The depth dose distribution of the secondary particles indicates that the photons deposit most of their dose close to the surface, while for alpha and protons it depends on the Bragg peak depth. Also, the deposited dose in the tumor is more than one hundred times larger than the deposited dose in the brain healthy tissue, and ten thousand times higher than the organs such as the thymus gland and thyroid. The results of this investigation confirmed that more effort should be made to use more realistic phantoms in treatment design.

Highlights

1. S. Webb, The physical basis of IMRT and inverse planning, Br. J. Radiol. 76, 678-689 (2003).

 

2. L.E. Farr, J.S. Robertson, In: Allgemeine Strahlentherapeutische Methodik / Methods and Procedures of Radiation Therapy, eds O. Dahl, L.E. Farr, S. Fedoruk, P.F. Hahn, U.K. Henschke, B.S. Hilaris, H. Kuttig, D.G. Mahan, L.D. Marinelli, B. Mårtenson, A. Perussia, J.S. Robertson, K.E. Scheer, L. Sundbom, R. Walstam, T.A. Watson, G. Weitzel, G.P. Welch, H. Vieten, F. Wachsmann (Springer Berlin Heidelberg, Berlin, Heidelberg, 1971).

 

3. R.F. Barth, et al., Boron neutron capture therapy of cancer: current status and future prospects, Clin. Cancer Res. 11, 3987-4002 (2005).

 

4. B. Larsson, et al, The high-energy proton beam as a neurosurgical tool, Nature, 182, 1222-1223 (1958).

 

5. S.M. Motevalli, A.A. Mowlavi, M.A. Rahmani, Iranian South Medical Journal, 18(2), 288-295 (2015).

 

6. R.R. Wilson, Radiological use of fast protons, Radiology, 47, 487-491 (1946).

 

7. J.H. Lawrence, et al., Pituitary irradiation with high-energy proton beams: a preliminary report, Cancer Res. 18, 121-134 (1958).

 

8. S.L. Choi, Q.-N. Nguyen, In: Proton Therapy, eds S.J. Frank, X.R. Zhu (Elsevier, Philadelphia, 2021).

 

9. A. Beddok, et al., Proton therapy for head and neck squamous cell carcinomas: A review of the physical and clinical challenges, Radiotherapy and Oncology, 147, 30-39 (2020).

 

10. H. Paganetti, Proton Therapy Physics, Second Edition (CRC Press, 2018).

 

11. U. Weber, Volumenkonforme Bestrahlung mit Kohlenstoffionen, PhDThesis, Universität Gh Kassel (1996).

 

12. J.R. Castro, et al., Treatment of cancer with heavy charged particles, International Journal of Radiation Oncology Biology Physics, 8, 2191-2198 (1982).

 

13. G. Kraft, Tumor therapy with heavy charged particles, Progress in Particle and Nuclear Physics, 45, S473-S544 (2000).

 

14. N. Matsufuji, Selection of carbon beam therapy: biophysical models of carbon beam therapy, J. Radiat. Res., 59, i58-i62 (2018).

 

15. T.D. Malouff, et al, Carbon Ion Therapy: A Modern Review of an Emerging Technology, Frontiers in Oncology, 10 (2020).

 

16. H. Paganetti, Proton Therapy Physics (CRC Press, 2016).

 

17. Z. Ahmadi Ganjeh, M. Eslami-Kalantari, A.A. Mowlavi, Dosimetry calculations of involved and noninvolved organs in proton therapy of liver cancer: a simulation study, Nuclear Science and Techniques, 30, 173 (2019).

 

18. In: An Introduction to Statistical Computing.

 

19. S. Agostinelli, et al., Geant4-a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506, 250-303 (2003).

 

20. J. Allison, et al., Recent developments in Geant4, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835, 186-225 (2016).

 

21. Z. Ahmadi Ganjeh, et al., Calculation of direct DNA damages by a new approach for carbon ions and protons using Geant4-DNA, Radiation Physics and Chemistry, 179, 109249 (2021).

 

22. S. Guatelli, et al, In: 2006 IEEE Nuclear Science Symposium Conference Record,  (IEEE, 2006).

 

23. D.R. White, et al., Report 44, Journal of the International Commission on Radiation Units and Measurements, os23, NP (2016).

 

24. D. Schardt, et al., Nuclear fragmentation of high-energy heavy-ion beams in water, Advances in Space Research, 17, 87-94 (1996).

 

25. H. Suit, et al., Proton vs carbon ion beams in the definitive radiation treatment of cancer patients, Radiotherapy and Oncology, 95, 3-22 (2010).

 

26. F.S. Rasouli, et al, Effect of elemental compositions on Monte Carlo dose calculations in proton therapy of eye tumors, Radiation Physics and Chemistry, 117, 112-119 (2015).

 

27. Z. Ahmadi Ganjeh, M. Eslami-Kalantari, A.A. Mowlavi, The Effect of Phantom Compositions on Dose Calculations in Proton Therapy of Liver Cancer, Journal of Arak University of Medical Sciences, 22 , 274-287(2020).

Keywords

1. S. Webb, The physical basis of IMRT and inverse planning, Br. J. Radiol. 76, 678-689 (2003).
 
2. L.E. Farr, J.S. Robertson, In: Allgemeine Strahlentherapeutische Methodik / Methods and Procedures of Radiation Therapy, eds O. Dahl, L.E. Farr, S. Fedoruk, P.F. Hahn, U.K. Henschke, B.S. Hilaris, H. Kuttig, D.G. Mahan, L.D. Marinelli, B. Mårtenson, A. Perussia, J.S. Robertson, K.E. Scheer, L. Sundbom, R. Walstam, T.A. Watson, G. Weitzel, G.P. Welch, H. Vieten, F. Wachsmann (Springer Berlin Heidelberg, Berlin, Heidelberg, 1971).
 
3. R.F. Barth, et al., Boron neutron capture therapy of cancer: current status and future prospects, Clin. Cancer Res. 11, 3987-4002 (2005).
 
4. B. Larsson, et al, The high-energy proton beam as a neurosurgical tool, Nature, 182, 1222-1223 (1958).
 
5. S.M. Motevalli, A.A. Mowlavi, M.A. Rahmani, Iranian South Medical Journal, 18(2), 288-295 (2015).
 
6. R.R. Wilson, Radiological use of fast protons, Radiology, 47, 487-491 (1946).
 
7. J.H. Lawrence, et al., Pituitary irradiation with high-energy proton beams: a preliminary report, Cancer Res. 18, 121-134 (1958).
 
8. S.L. Choi, Q.-N. Nguyen, In: Proton Therapy, eds S.J. Frank, X.R. Zhu (Elsevier, Philadelphia, 2021).
 
9. A. Beddok, et al., Proton therapy for head and neck squamous cell carcinomas: A review of the physical and clinical challenges, Radiotherapy and Oncology, 147, 30-39 (2020).
 
10. H. Paganetti, Proton Therapy Physics, Second Edition (CRC Press, 2018).
 
11. U. Weber, Volumenkonforme Bestrahlung mit Kohlenstoffionen, PhDThesis, Universität Gh Kassel (1996).
 
12. J.R. Castro, et al., Treatment of cancer with heavy charged particles, International Journal of Radiation Oncology Biology Physics, 8, 2191-2198 (1982).
 
13. G. Kraft, Tumor therapy with heavy charged particles, Progress in Particle and Nuclear Physics, 45, S473-S544 (2000).
 
14. N. Matsufuji, Selection of carbon beam therapy: biophysical models of carbon beam therapy, J. Radiat. Res., 59, i58-i62 (2018).
 
15. T.D. Malouff, et al, Carbon Ion Therapy: A Modern Review of an Emerging Technology, Frontiers in Oncology, 10 (2020).
 
16. H. Paganetti, Proton Therapy Physics (CRC Press, 2016).
 
17. Z. Ahmadi Ganjeh, M. Eslami-Kalantari, A.A. Mowlavi, Dosimetry calculations of involved and noninvolved organs in proton therapy of liver cancer: a simulation study, Nuclear Science and Techniques, 30, 173 (2019).
 
18. In: An Introduction to Statistical Computing.
 
19. S. Agostinelli, et al., Geant4-a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506, 250-303 (2003).
 
20. J. Allison, et al., Recent developments in Geant4, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835, 186-225 (2016).
 
21. Z. Ahmadi Ganjeh, et al., Calculation of direct DNA damages by a new approach for carbon ions and protons using Geant4-DNA, Radiation Physics and Chemistry, 179, 109249 (2021).
 
22. S. Guatelli, et al, In: 2006 IEEE Nuclear Science Symposium Conference Record,  (IEEE, 2006).
 
23. D.R. White, et al., Report 44, Journal of the International Commission on Radiation Units and Measurements, os23, NP (2016).
 
24. D. Schardt, et al., Nuclear fragmentation of high-energy heavy-ion beams in water, Advances in Space Research, 17, 87-94 (1996).
 
25. H. Suit, et al., Proton vs carbon ion beams in the definitive radiation treatment of cancer patients, Radiotherapy and Oncology, 95, 3-22 (2010).
 
26. F.S. Rasouli, et al, Effect of elemental compositions on Monte Carlo dose calculations in proton therapy of eye tumors, Radiation Physics and Chemistry, 117, 112-119 (2015).
 
27. Z. Ahmadi Ganjeh, M. Eslami-Kalantari, A.A. Mowlavi, The Effect of Phantom Compositions on Dose Calculations in Proton Therapy of Liver Cancer, Journal of Arak University of Medical Sciences, 22 , 274-287(2020).