In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

1 Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Postal code: 1439956191, Tehran – Iran

2 Department of Biology, Faculty of Sciences, Islamic Azad University, P.O.Box: 14515-775, Tehran – Iran

3 ENTC, Isfahan Nuclear Research Center, Isfahan – Iran

4 Nuclear Fuel Cycle Research School.NuclNuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box:11365-8486, Tehran-Iran

5 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box:11365-8486, Tehran-Iran

Abstract

Uranium compounds are toxic and radioactive. Its poisonous properties can be fatal. So, it is necessary to prevent its excessive entry into nature due to uranium's chemical toxicity and radioactivity. Waste from industrial-nuclear centers also has different amounts of uranium; therefore, the removal of this element from the effluent of these centers is essential. On the other hand, due to the importance and limited resources, uranium recovery from waste has economic value. In the present study, the Response Surface Method (RSM) based on the central composite design was used to evaluate and optimize different parameters affecting the bioremediation process of Shewanella RCRI7 in real waste. The proposed second-order model with a correlation coefficient R2 = 0.94 appropriately predicted the experimental data and the maximum uranium reduction efficiency by Shewanella RCRI7 under optimal conditions (pH = 5.7-6.5, Temperature 26.63 °C and Time 117 hours) was estimated to be about 98%. In the next step to interact between the variables, three-dimensional procedures with pH and temperature; temperature and time; pH and time interactions were obtained; finally, the uranium reduction in real effluent was investigated by XRD and spectrophotometric methods. Based on the results, Shewanella RCRI7 is determined as a valuable candidate for uranium bioreduction processes in the determined industrial wastewater. On the other hand, using the response surface methodology can provide a comprehensive understanding of the process, the mechanism of uranium bioremediation by Shewanella RCRI7, and the theoretical support for this process.

Highlights

  1. U.S. Department of Energy, Final site observational work plan for the UMTRA project Old Rifle site GJO-99-88-TAR. U.S. Department of Energy, Grand Junction, Colo (1999).

 

  1. H.A. Vrionis, et al, Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site, Appl. Environ. Microbiol., 71(10), 6308 (2005).

 

  1. R.T. Anderson, et al, Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uraniumcontaminated aquifer, Appl. Environ. Microbiol., 69, 5884-5891(2003).

 

  1. J.D. Istok, In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer, Environ. Sci. Technol., 38, 468-475 (2004).

 

  1. J.M. Senko, et al, In-situ evidence for uranium immobilization and remobilization, Environ. Sci. Technol., 36, 1491-1496 (2002).

 

  1. A. Zaheri Abdehvand, et al, Removal of U (VI) from aqueous solutions using Shewanella sp. RCRI7, isolated from Qurugöl Lake in Iran, Radiochim. Acta., 105(2), 109-120 (2017).

 

  1. A. Abdelouas, et al, Biological reduction of uranium in groundwater and subsurface soil, Sci. Total. Environ., 250(1-3), 21-35 (2000).

 

  1. J.D. Wall, L.R. Krumholz, Uranium reduction, Annu. Rev. Microbiol., 60, 149-166 (2006).

 

  1. R.K. Sani, B.M. Peyton, A. Dohnalkova, Comparison of uranium (VI) removal by Shewanella oneidensis MR-1 in flow and batch reactors, Water Res., 42(12), 2993-3002 (2008).

 

  1. L. Sheng, J. Szymanowski, J.B. Fein, The effects of uranium speciation on the rate of U (VI) reduction by Shewanella oneidensis MR-1, Geochim. Cosmochim. Acta., 75(12), 3558-3567 (2011).

 

  1. L. Sheng, J.B. Fein, Uranium reduction by Shewanella oneidensis MR-1 as a function of NaHCO3 concentration: surface complexation control of reduction kinetics, Environ. Sci. Technol., 48(7), 3768-3775 (2014).

 

  1. K. Venkateswaran, Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp., Int. J. Syst. Evol. Microbiol., 49(2), 705-724 (1999).

 

  1. K.H. Williams, et al, Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry, Curr. Opin. Biotechnol., 24(3), 489-497 (2013).

 

  1. S.G. Mirlahiji, K. Eisazadeh, Bioremediation of Uranium via Geobacter spp., J. Res. Dev., 187(1477), 1-7 (2014).

 

  1. V. Tarhriz, et al, Isolation and characterization of some aquatic bacteria from Qurugol Lake in Azerbaijan under aerobic conditions, Adv. Environ. Biol., 5(10), 3173-3179 (2011).

 

  1. R. Ghasemi, et al, Evaluation of mtr cluster expression in Shewanella RCRI7 during uranium removal, Arch. Microbiol., 202(10), 2711-2726 (2020).

 

  1. M. Zarei, et al, U (VI) tolerance affects Shewanella sp. RCRI7 biological responses: growth, morphology and bioreduction ability, Arch. Microbiol., 204(81), 1-13 (2021).

 

  1. K.R. Czerwinski, M.F. Polz, Uranium enrichment using microorganisms, Ed: Google Patents (2008).

 

  1. C. Cojocaru, G. Zakrzewska-Trznadel, Response Surface Modeling and Optimization of Copper Removal from Aqua Solutions Using Polymer Assisted Ultrafiltration, J. Membrane Sci., 298, 56-70 (2007).

 

  1. A. Ozer, et al, Biosorption of Copper(II) Ions on Enteromorpha Prolifera: Application of Response Surface Methodology (RSM), Chem. Eng. J., 146, 377–387 (2009).

 

  1. J.I. Khattar, S. Shailza, Optimization of Cd2+ Removal by the Cyanobacterium Synechocystis Pevalekii Using the Response Surface Methodology, Process Biochem., 44, 118–121 (2009).

 

  1. D.R. Lovley, et al, Enzymatic iron and uranium reduction by sulfate-reducing bacteria, Marine Geology., 113(1-2), 41-53 (1993).

 

  1. D.R. Lovley, et al, Microbial reduction of uranium, Nature., 350(6317), 413-416 (1991).

 

  1. H. Sohbatzadeh Lonbar, Experimental investigation of operational parameters involved in uranium biosorption in fixed-bed columns using composite biosorbent of Pseudomonas-chitosan, PhD thesis. Amirkabir University of Technology & Nuclear Science and Technology Research Institute (2016).

 

  1. A. Witek-Krowiak, et al, Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process, Bioresour. Technol., 160, 150-160 (2014).

 

  1. R. Boopathy, Factors limiting bioremediation technologies, Bioresour.Technol., 74, 63-67 (2000).

 

  1. T.A. Kurniawan, et al, Physico–chemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J., 118, 83-98 (2006).

 

  1. J.R. Silva, A.C. De Melo Ferreira, A.C.A. Da Costa, Uranium biosorption under dynamic conditions: Preliminary tests with Sargassum filipendula in real radioactive wastewater containing Ba, Cr, Fe, Mn, Pb, Ca and Mg, J. Radioanal. Nucl. Chem., 279(3), 909-914 (2009).

 

  1. S. Pal, et al, Bioleaching of low-grade uranium ore using Acidithiobacillus ferrooxidans, Indian J. Microbiol., 50(1), 70-75 (2010).

 

  1. A.M. Soliman, et al, Selective removal of uranium from wastewater using sludge collected from refinery wastewater treatment: Equilibrium, thermodynamic and kinetics studies, J. Water. Process. Eng., 19, 267-276 (2017).

 

  1. M.A. Bezerra, et al, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta., 76(5), 965-977 (2008).

 

  1. M. Pourkhalil, et al, Optimization of the Catalytic Oxidation of Carbon Monoxide by Response Surface Method, J. Petroleum Res., 29(3-98), 131-144 (2019).

 

  1. C. Kim, E. Ndegwa, Influence of pH and temperature on growth characteristics of leading foodborne pathogens in a laboratory medium and select food beverages, Austin Food Sci., 3(1), 1-8 (2018).

 

  1. H. Sohbatzadeh, et al, U (VI) biosorption by bi-functionalized Pseudomonas putida@ chitosan bead: Modeling and optimization using RSM, Int. J. Biol. Macromol., 89, 647-658 (2016).

 

  1. N. Hashemi, et al, Optimization of uranium biosorption in solutions by Sargassum boveanum using RSM method, Adv. Environ. Res. (AER)., 9(1), 65-84 (2020).

 

  1. Ş. Sert, M. Eral, Uranium adsorption studies on aminopropyl modified mesoporous sorbent (NH2–MCM-41) using statistical design method, J. Nucl. Mater., 406(3), 285-292 (2010).

 

  1. T. Khijniak, et al, Reduction of uranium (VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens, Appl. Environ. Microbiol., 71(10), 6423-6426 (2005).

 

  1. Y. Roh, et al, Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado, Appl. Environ. Microbiol., 68(12), 6013-6020 (2002).

 

  1. P. Wang, et al, Effects of riboflavin and AQS as electron shuttles on U (vi) reduction and precipitation by Shewanella putrefaciens, RSC Adv., 8, 30692-30700 (2018).

 

  1. A. Francis, C. Dodge, Bioreduction of uranium (VI) complexed with citric acid by Clostridia affects its structure and solubility, Environ. Sci. Technol., 42(22), 8277-8282 (2008).

 

  1. A. Korenevsky, T.J. Beveridge, The surface physicochemistry and adhesiveness of Shewanella are affected by their surface polysaccharides, Microbiol., 153(6), 1872-1883 (2007)

Keywords

  1. U.S. Department of Energy, Final site observational work plan for the UMTRA project Old Rifle site GJO-99-88-TAR. U.S. Department of Energy, Grand Junction, Colo (1999).

 

  1. H.A. Vrionis, et al, Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site, Appl. Environ. Microbiol., 71(10), 6308 (2005).

 

  1. R.T. Anderson, et al, Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uraniumcontaminated aquifer, Appl. Environ. Microbiol., 69, 5884-5891(2003).

 

  1. J.D. Istok, In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer, Environ. Sci. Technol., 38, 468-475 (2004).

 

  1. J.M. Senko, et al, In-situ evidence for uranium immobilization and remobilization, Environ. Sci. Technol., 36, 1491-1496 (2002).

 

  1. A. Zaheri Abdehvand, et al, Removal of U (VI) from aqueous solutions using Shewanella sp. RCRI7, isolated from Qurugöl Lake in Iran, Radiochim. Acta., 105(2), 109-120 (2017).

 

  1. A. Abdelouas, et al, Biological reduction of uranium in groundwater and subsurface soil, Sci. Total. Environ., 250(1-3), 21-35 (2000).

 

  1. J.D. Wall, L.R. Krumholz, Uranium reduction, Annu. Rev. Microbiol., 60, 149-166 (2006).

 

  1. R.K. Sani, B.M. Peyton, A. Dohnalkova, Comparison of uranium (VI) removal by Shewanella oneidensis MR-1 in flow and batch reactors, Water Res., 42(12), 2993-3002 (2008).

 

  1. L. Sheng, J. Szymanowski, J.B. Fein, The effects of uranium speciation on the rate of U (VI) reduction by Shewanella oneidensis MR-1, Geochim. Cosmochim. Acta., 75(12), 3558-3567 (2011).

 

  1. L. Sheng, J.B. Fein, Uranium reduction by Shewanella oneidensis MR-1 as a function of NaHCO3 concentration: surface complexation control of reduction kinetics, Environ. Sci. Technol., 48(7), 3768-3775 (2014).

 

  1. K. Venkateswaran, Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp., Int. J. Syst. Evol. Microbiol., 49(2), 705-724 (1999).

 

  1. K.H. Williams, et al, Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry, Curr. Opin. Biotechnol., 24(3), 489-497 (2013).

 

  1. S.G. Mirlahiji, K. Eisazadeh, Bioremediation of Uranium via Geobacter spp., J. Res. Dev., 187(1477), 1-7 (2014).

 

  1. V. Tarhriz, et al, Isolation and characterization of some aquatic bacteria from Qurugol Lake in Azerbaijan under aerobic conditions, Adv. Environ. Biol., 5(10), 3173-3179 (2011).

 

  1. R. Ghasemi, et al, Evaluation of mtr cluster expression in Shewanella RCRI7 during uranium removal, Arch. Microbiol., 202(10), 2711-2726 (2020).

 

  1. M. Zarei, et al, U (VI) tolerance affects Shewanella sp. RCRI7 biological responses: growth, morphology and bioreduction ability, Arch. Microbiol., 204(81), 1-13 (2021).

 

  1. K.R. Czerwinski, M.F. Polz, Uranium enrichment using microorganisms, Ed: Google Patents (2008).

 

  1. C. Cojocaru, G. Zakrzewska-Trznadel, Response Surface Modeling and Optimization of Copper Removal from Aqua Solutions Using Polymer Assisted Ultrafiltration, J. Membrane Sci., 298, 56-70 (2007).

 

  1. A. Ozer, et al, Biosorption of Copper(II) Ions on Enteromorpha Prolifera: Application of Response Surface Methodology (RSM), Chem. Eng. J., 146, 377–387 (2009).

 

  1. J.I. Khattar, S. Shailza, Optimization of Cd2+ Removal by the Cyanobacterium Synechocystis Pevalekii Using the Response Surface Methodology, Process Biochem., 44, 118–121 (2009).

 

  1. D.R. Lovley, et al, Enzymatic iron and uranium reduction by sulfate-reducing bacteria, Marine Geology., 113(1-2), 41-53 (1993).

 

  1. D.R. Lovley, et al, Microbial reduction of uranium, Nature., 350(6317), 413-416 (1991).

 

  1. H. Sohbatzadeh Lonbar, Experimental investigation of operational parameters involved in uranium biosorption in fixed-bed columns using composite biosorbent of Pseudomonas-chitosan, PhD thesis. Amirkabir University of Technology & Nuclear Science and Technology Research Institute (2016).

 

  1. A. Witek-Krowiak, et al, Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process, Bioresour. Technol., 160, 150-160 (2014).

 

  1. R. Boopathy, Factors limiting bioremediation technologies, Bioresour.Technol., 74, 63-67 (2000).

 

  1. T.A. Kurniawan, et al, Physico–chemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J., 118, 83-98 (2006).

 

  1. J.R. Silva, A.C. De Melo Ferreira, A.C.A. Da Costa, Uranium biosorption under dynamic conditions: Preliminary tests with Sargassum filipendula in real radioactive wastewater containing Ba, Cr, Fe, Mn, Pb, Ca and Mg, J. Radioanal. Nucl. Chem., 279(3), 909-914 (2009).

 

  1. S. Pal, et al, Bioleaching of low-grade uranium ore using Acidithiobacillus ferrooxidans, Indian J. Microbiol., 50(1), 70-75 (2010).

 

  1. A.M. Soliman, et al, Selective removal of uranium from wastewater using sludge collected from refinery wastewater treatment: Equilibrium, thermodynamic and kinetics studies, J. Water. Process. Eng., 19, 267-276 (2017).

 

  1. M.A. Bezerra, et al, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta., 76(5), 965-977 (2008).

 

  1. M. Pourkhalil, et al, Optimization of the Catalytic Oxidation of Carbon Monoxide by Response Surface Method, J. Petroleum Res., 29(3-98), 131-144 (2019).

 

  1. C. Kim, E. Ndegwa, Influence of pH and temperature on growth characteristics of leading foodborne pathogens in a laboratory medium and select food beverages, Austin Food Sci., 3(1), 1-8 (2018).

 

  1. H. Sohbatzadeh, et al, U (VI) biosorption by bi-functionalized Pseudomonas putida@ chitosan bead: Modeling and optimization using RSM, Int. J. Biol. Macromol., 89, 647-658 (2016).

 

  1. N. Hashemi, et al, Optimization of uranium biosorption in solutions by Sargassum boveanum using RSM method, Adv. Environ. Res. (AER)., 9(1), 65-84 (2020).

 

  1. Ş. Sert, M. Eral, Uranium adsorption studies on aminopropyl modified mesoporous sorbent (NH2–MCM-41) using statistical design method, J. Nucl. Mater., 406(3), 285-292 (2010).

 

  1. T. Khijniak, et al, Reduction of uranium (VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens, Appl. Environ. Microbiol., 71(10), 6423-6426 (2005).

 

  1. Y. Roh, et al, Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado, Appl. Environ. Microbiol., 68(12), 6013-6020 (2002).

 

  1. P. Wang, et al, Effects of riboflavin and AQS as electron shuttles on U (vi) reduction and precipitation by Shewanella putrefaciens, RSC Adv., 8, 30692-30700 (2018).

 

  1. A. Francis, C. Dodge, Bioreduction of uranium (VI) complexed with citric acid by Clostridia affects its structure and solubility, Environ. Sci. Technol., 42(22), 8277-8282 (2008).

 

  1. A. Korenevsky, T.J. Beveridge, The surface physicochemistry and adhesiveness of Shewanella are affected by their surface polysaccharides, Microbiol., 153(6), 1872-1883 (2007)