Document Type : Research Paper
Authors
Department of Physics, Damghan University, P.O. Box: 36716-41167, Damghan - Iran
Highlights
1. H. Hora, New aspects for fusion energy using inertial confinement, Laser Part. Beams, 25, 37 (2007).
2. R.L. McCrory, et al., Progress in direct-drive inertial confinement fusion, Phys. Plasmas, 15, 055503 (2008).
3. J. Lindl, Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas, 2, 3933 (1995).
4. V.N. Goncharov, Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket, Phys. Plasmas, 10, 1906 (2003).
5. J. Breil, et al., Multi-material ALE computation in inertial confinement fusion code CHIC, Comput. Fluids, 46, 161 (2011).
6. S. Weber, et al., A transport simulation code for inertial confinement fusion relevant laser–plasma interaction, Comput. Phys. Commun, 168, 141 (2005).
7. R.W. Paddock, et al, One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions, Philos. T. Roy. Soc. A. 379, 20200224 (2020).
8. R. Ramis, J. Meyer-ter-Vehn, MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations, Comput. Phys. Commun, 203, 226 (2016).
9. J. Biener, Diamond ablators for inertial confinement fusion, Fusion Sci. Technol, 49, 737 (2006).
10. J. Biener, et al., Diamond spheres for inertial confinement fusion, Nucl. Fusion, 49, 112001 (2009).
11. L.B. Hopkins, et al., Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant, Phys. Plasmas, 25, 080706 (2018).
12. K.D. Meaney, et al, Improved inertial confinement fusion gamma reaction history 12C gamma-ray signal by direct subtraction, Phys. Plasmas, 90, 113503 (2019).
13. A.J. MacKinnon, High-density carbon ablator experiments on the National Ignition Facility, Phys. Plasmas, 21, 056318 (2014).
14. M. Najjar, B. Khanbabaei, Effects of carbon impurity on the ignition of deuterium-tritium targets under the relativistic shock waves, Phys. Plasmas, 26, 032709 (2019).
15. Heather D. Whitley, et al., Comparison of ablators for the polar direct drive exploding pusher platform, arXiv: 2006. 15635 [physics.comp-ph] (2020).
16. R. Ramis, R. Schmalz, J. Meyer-ter-vehn, Multi- a computer code for one- dimensional multigroup radiation hydrodynamics, Comput. Phys. Commun. 49, 475 (1988).
17. R. Ramis, et al., MULTI-fs–A computer code for laser–plasma interaction in the femtosecond regime, Comput. Phys. Commun, 183, 637 (2012).
18. R. Ramis, One-dimensional Lagrangian implicit hydrodynamic algorithm for Inertial Confinement Fusion applications, J. Comput. Phys, 330, 173 (2017).
19. R.L. McCrory, C.P. Verdon, Inertial Confinement Fusion, Proceedings of the Course and Workshop, (Eds. Caruso and E. Sindoni, 1988), 83-123 (1988).
20. S. Atzeni, J. Meyer-ter-Vehn, The physics of inertial fusion, 1st ed. (Claredon Press, Oxford, 2004).
21. S. Pfalzner, An Introduction to Inertial Confinement Fusion, (CRC Press, Taylor & Francis, 2006).
22. A. Simon, et al, On the inhomogeneous two‐plasmon instability, Phys. Fluids, 26, 3107 (1983).
23. D.T. Michel, et al, Experimental Validation of the Two-Plasmon-Decay Common-Wave Process, Phys. Rev. Lett. 109, 155007 (2012).
24. R.S. Craxton, Direct-drive inertial confinement fusion: A review, Phys Plasmas, 22, 110501 (2015).
25. V.N. Goncharov, Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA, Phys. Plasmas, 21, 056315 (2014)
Keywords