In cooperation with the Iranian Nuclear Society

Study of ignition and burn dynamics of inertial fusion target with diamond ablator using MULTI-IFE hydrodynamic code

Document Type : Research Paper

Authors

Department of Physics, Damghan University, P.O. Box: 36716-41167, Damghan - Iran

Abstract
Central ignition is one of the main ideas of inertial confinement fusion in which the target is irradiated symmetrically and uniformly by laser beams. The study of target layer design using hydrodynamic codes is very important in improving target performance and fuel gain. Therefore, in the present study, we investigated the optimization of a typical spherical target with a polystyrene ablator by using MULTI-IFE hydrodynamic code. Considering the remarkable physical properties of diamond, it has been used to optimize the ablator layer. This target was irradiated with symmetrical laser beams with 1.7 MJ total pulse energy and peak power of about 600 TW. The results show that the optimal thickness of the diamond is about 18 mm. A diamond ablator increases the absorbed laser energy at the target surface by about 16%. Increasing the absorbed energy leads to an increase of about 4% in the maximum temperature of the ions, and as a result, the fuel burn fraction increases by about 1%. Eventually, fuel gain increases by about 9%.

Highlights

1. H. Hora, New aspects for fusion energy using inertial confinement, Laser Part. Beams, 25, 37 (2007).

 

2. R.L. McCrory, et al., Progress in direct-drive inertial confinement fusion, Phys. Plasmas, 15, 055503 (2008).

 

3. J. Lindl, Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas, 2, 3933 (1995).

 

4. V.N. Goncharov, Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket, Phys. Plasmas, 10, 1906 (2003).

 

5. J. Breil, et al., Multi-material ALE computation in inertial confinement fusion code CHIC, Comput. Fluids, 46, 161 (2011).

 

6. S. Weber, et al., A transport simulation code for inertial confinement fusion relevant laser–plasma interaction, Comput. Phys. Commun, 168, 141 (2005).

 

7. R.W. Paddock, et al, One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions, Philos. T. Roy. Soc. A. 379, 20200224 (2020).

 

8. R. Ramis, J. Meyer-ter-Vehn, MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations, Comput. Phys. Commun, 203, 226 (2016).

 

9. J. Biener, Diamond ablators for inertial confinement fusion, Fusion Sci. Technol, 49, 737 (2006).

 

10. J. Biener, et al., Diamond spheres for inertial confinement fusion, Nucl. Fusion, 49, 112001 (2009).

 

11. L.B. Hopkins, et al., Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant, Phys. Plasmas, 25, 080706 (2018).

 

12. K.D. Meaney, et al, Improved inertial confinement fusion gamma reaction history 12C gamma-ray signal by direct subtraction, Phys. Plasmas, 90, 113503 (2019).

 

13. A.J. MacKinnon, High-density carbon ablator experiments on the National Ignition Facility, Phys. Plasmas, 21, 056318 (2014).

 

14. M. Najjar, B. Khanbabaei, Effects of carbon impurity on the ignition of deuterium-tritium targets under the relativistic shock waves, Phys. Plasmas, 26, 032709 (2019).

 

15. Heather D. Whitley, et al., Comparison of ablators for the polar direct drive exploding pusher platform, arXiv: 2006. 15635 [physics.comp-ph] (2020).

 

16. R. Ramis, R. Schmalz, J. Meyer-ter-vehn, Multi- a computer code for one- dimensional multigroup radiation hydrodynamics, Comput. Phys. Commun. 49, 475 (1988).

 

17. R. Ramis, et al., MULTI-fs–A computer code for laser–plasma interaction in the femtosecond regime, Comput. Phys. Commun, 183, 637 (2012).

 

18. R. Ramis, One-dimensional Lagrangian implicit hydrodynamic algorithm for Inertial Confinement Fusion applications, J. Comput. Phys, 330, 173 (2017).

 

19. R.L. McCrory, C.P. Verdon, Inertial Confinement Fusion, Proceedings of the Course and Workshop, (Eds. Caruso and E. Sindoni, 1988), 83-123 (1988).

 

20. S. Atzeni, J. Meyer-ter-Vehn, The physics of inertial fusion, 1st ed. (Claredon Press, Oxford, 2004).

 

21. S. Pfalzner, An Introduction to Inertial Confinement Fusion, (CRC Press, Taylor & Francis, 2006).

 

22. A. Simon, et al, On the inhomogeneous two‐plasmon instability, Phys. Fluids, 26, 3107 (1983).

 

23. D.T. Michel, et al, Experimental Validation of the Two-Plasmon-Decay Common-Wave Process, Phys. Rev. Lett. 109, 155007 (2012).

 

24. R.S. Craxton, Direct-drive inertial confinement fusion: A review, Phys Plasmas, 22, 110501 (2015).

 

25. V.N. Goncharov, Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA, Phys. Plasmas, 21, 056315 (2014)

Keywords


1. H. Hora, New aspects for fusion energy using inertial confinement, Laser Part. Beams, 25, 37 (2007).
 
2. R.L. McCrory, et al., Progress in direct-drive inertial confinement fusion, Phys. Plasmas, 15, 055503 (2008).
 
3. J. Lindl, Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas, 2, 3933 (1995).
 
4. V.N. Goncharov, Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket, Phys. Plasmas, 10, 1906 (2003).
 
5. J. Breil, et al., Multi-material ALE computation in inertial confinement fusion code CHIC, Comput. Fluids, 46, 161 (2011).
 
6. S. Weber, et al., A transport simulation code for inertial confinement fusion relevant laser–plasma interaction, Comput. Phys. Commun, 168, 141 (2005).
 
7. R.W. Paddock, et al, One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions, Philos. T. Roy. Soc. A. 379, 20200224 (2020).
 
8. R. Ramis, J. Meyer-ter-Vehn, MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations, Comput. Phys. Commun, 203, 226 (2016).
 
9. J. Biener, Diamond ablators for inertial confinement fusion, Fusion Sci. Technol, 49, 737 (2006).
 
10. J. Biener, et al., Diamond spheres for inertial confinement fusion, Nucl. Fusion, 49, 112001 (2009).
 
11. L.B. Hopkins, et al., Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant, Phys. Plasmas, 25, 080706 (2018).
 
12. K.D. Meaney, et al, Improved inertial confinement fusion gamma reaction history 12C gamma-ray signal by direct subtraction, Phys. Plasmas, 90, 113503 (2019).
 
13. A.J. MacKinnon, High-density carbon ablator experiments on the National Ignition Facility, Phys. Plasmas, 21, 056318 (2014).
 
14. M. Najjar, B. Khanbabaei, Effects of carbon impurity on the ignition of deuterium-tritium targets under the relativistic shock waves, Phys. Plasmas, 26, 032709 (2019).
 
15. Heather D. Whitley, et al., Comparison of ablators for the polar direct drive exploding pusher platform, arXiv: 2006. 15635 [physics.comp-ph] (2020).
 
16. R. Ramis, R. Schmalz, J. Meyer-ter-vehn, Multi- a computer code for one- dimensional multigroup radiation hydrodynamics, Comput. Phys. Commun. 49, 475 (1988).
 
17. R. Ramis, et al., MULTI-fs–A computer code for laser–plasma interaction in the femtosecond regime, Comput. Phys. Commun, 183, 637 (2012).
 
18. R. Ramis, One-dimensional Lagrangian implicit hydrodynamic algorithm for Inertial Confinement Fusion applications, J. Comput. Phys, 330, 173 (2017).
 
19. R.L. McCrory, C.P. Verdon, Inertial Confinement Fusion, Proceedings of the Course and Workshop, (Eds. Caruso and E. Sindoni, 1988), 83-123 (1988).
 
20. S. Atzeni, J. Meyer-ter-Vehn, The physics of inertial fusion, 1st ed. (Claredon Press, Oxford, 2004).
 
21. S. Pfalzner, An Introduction to Inertial Confinement Fusion, (CRC Press, Taylor & Francis, 2006).
 
22. A. Simon, et al, On the inhomogeneous two‐plasmon instability, Phys. Fluids, 26, 3107 (1983).
 
23. D.T. Michel, et al, Experimental Validation of the Two-Plasmon-Decay Common-Wave Process, Phys. Rev. Lett. 109, 155007 (2012).
 
24. R.S. Craxton, Direct-drive inertial confinement fusion: A review, Phys Plasmas, 22, 110501 (2015).
 
25. V.N. Goncharov, Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA, Phys. Plasmas, 21, 056315 (2014)