In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

1 Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-3486, Tehran - Iran

2 Department of Nuclear Engineering, Faculty of Mechanical Engineering, Shiraz University, P.O. Box: 7193616548, Shiraz - Iran

3 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran - Iran

4 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-3486, Tehran - Iran

Abstract

Neutron radiography (NRG) is a non-destructive imaging technique for image generation using neutron radiation. In this paper, feasibility studies of neutron radiography for IECF were performed by Geant4 Monte Carlo code. The effects of the different thicknesses of lead on the image and the detection possibility of cavities with different sizes inside a thick lead have been investigated to understand the performance of the device for neutron radiography purposes. The quality of the images was evaluated in terms of contrast. The simulation results showed the efficiency and limitations of NRG for IECF devices and the potential areas where NRG can be performed.

Highlights

1. P. Von der Hardt, H. Röttger, Neutron radiography handbook: nuclear science and technology, Springer Science & Business Media, (2012).
 
2. H. Berger, Practical applications of neutron radiography and gaging, ASTM International, (1976).
 
3.   A. Shaikh, Neutron Radiography Facility at CIRUS Reactor for NDE Applications, in Proceedings of the national Seminar & Exhibition on Nondestructive Evaluation, ISNT-NDE, 148-151, (2009).
 
4.   A. Heller, J. Brenizer, Neutron radiography, in Neutron imaging and applications: Springer, 67-80 (2009).
 
5.   J. Barton, Neutron radiography—an overview, Practical Applications of Neutron Radiography and Gaging, (1976).
 
6. F. Abbasi Davani, et al, Neutron spectrum measurement in D+Be reaction, Iranian Journal of Physics Research, 3 (2), 101-7 (2019).
 
7. N. Tsoulfanidis, S. Landsberger, Measurement & detection of radiation, CRC Press, (2021).
 
8.   R.T. Klann, A system for fast neutron radiography, in AIP Conference Proceedings, American Institute of Physics, 392(1), 883-886 (1997).
 
9.   C.J. Yi, S. Nilsuwankosit, Development of fast neutron radiography system based on portable neutron generator, in AIP Conference Proceedings, AIP Publishing LLC, 1704(1), 030007 (2016).
 
10. D.L. Williams, et al, A Fast Neutron Radiography System Using a High Yield Portable DT Neutron Source, Journal of Imaging, 6(12), 128, (2020).
 
11. G.H. Miley, A portable neutron/tunable X-ray source based on inertial electrostatic confinement, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 422(1-3), 16-20, (1999).
 
12. G.H. Miley, S.K. Murali, Inertial electrostatic confinement (IEC) fusion, Fundamentals and Applications, (2014).
 
13. R. Ashley, et al, Steady-state D3He proton production in an IEC fusion device, Fusion Technology, 39(2P2), 546-551 (2001).

 

14. G.L. Kulcinski, J.F. Santarius, New opportunities for fusion in the 21st century-advanced fuels, Fusion Technology, 39(2P2), 480-485 (2001).
 
15. K. Yoshikawa, et al., Research and development of a compact discharge-driven D–D fusion neutron source for explosive detection, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 261(1-2), 299-302 (2007).
 
16. R.W. Bussard, Waste Transmutation by High Flux DT Fusion Neutrons from Inertial Electrostatic Fusion (IEF) Systems, Global 1993 International Conference and Technology Exhibition on Future Nuclear Systems, Sep. 12-17, (1993).
 
17. K. Takakura, et al., Neutron Radiography Using Inertial Electrostatic Confinement (IEC) Fusion, Plasma and Fusion Research, 13, 2406075-2406075 (2018).
 
18. S. Bishnoi, et al, Fast Neutron Radiography With DT Neutron Generator, in Indian National Seminar and Exhibition on Non-Destructive Evaluation NDE, Dec, 68-73 (2016).
 
19. M. Bakr, et al, Characterization of an ultra-compact neutron source based on an IEC fusion device and its prospective applications in radiography, Fusion Engineering and Design, 167, 112346 (2021).
 
20. V. Damideh, et al., Experimental study of the Iranian inertial electrostatic confinement fusion device as a continuous neutron generator, Journal of Fusion Energy, 31(2), 109-111 (2012).
 
21. S. Agostinelli, et al, GEANT4-a simulation toolkitNIM A506 250–303, ed, (2003).
 
22. A. Bungau, et al., Proposal for an electron antineutrino disappearance search using high-rate li 8 production and decay, Physical Review Letters, 109(14), 141802 (2012).
 
23. I. Antcheva, et al., ROOT—A C++ framework for petabyte data storage, statistical analysis and visualization, Computer Physics Communications, 182(6), 1384-1385 (2011).

Keywords

1. P. Von der Hardt, H. Röttger, Neutron radiography handbook: nuclear science and technology, Springer Science & Business Media, (2012).
 
2. H. Berger, Practical applications of neutron radiography and gaging, ASTM International, (1976).
 
3.   A. Shaikh, Neutron Radiography Facility at CIRUS Reactor for NDE Applications, in Proceedings of the national Seminar & Exhibition on Nondestructive Evaluation, ISNT-NDE, 148-151, (2009).
 
4.   A. Heller, J. Brenizer, Neutron radiography, in Neutron imaging and applications: Springer, 67-80 (2009).
 
5.   J. Barton, Neutron radiography—an overview, Practical Applications of Neutron Radiography and Gaging, (1976).
 
6. F. Abbasi Davani, et al, Neutron spectrum measurement in D+Be reaction, Iranian Journal of Physics Research, 3 (2), 101-7 (2019).
 
7. N. Tsoulfanidis, S. Landsberger, Measurement & detection of radiation, CRC Press, (2021).
 
8.   R.T. Klann, A system for fast neutron radiography, in AIP Conference Proceedings, American Institute of Physics, 392(1), 883-886 (1997).
 
9.   C.J. Yi, S. Nilsuwankosit, Development of fast neutron radiography system based on portable neutron generator, in AIP Conference Proceedings, AIP Publishing LLC, 1704(1), 030007 (2016).
 
10. D.L. Williams, et al, A Fast Neutron Radiography System Using a High Yield Portable DT Neutron Source, Journal of Imaging, 6(12), 128, (2020).
 
11. G.H. Miley, A portable neutron/tunable X-ray source based on inertial electrostatic confinement, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 422(1-3), 16-20, (1999).
 
12. G.H. Miley, S.K. Murali, Inertial electrostatic confinement (IEC) fusion, Fundamentals and Applications, (2014).
 
13. R. Ashley, et al, Steady-state D3He proton production in an IEC fusion device, Fusion Technology, 39(2P2), 546-551 (2001).
 
14. G.L. Kulcinski, J.F. Santarius, New opportunities for fusion in the 21st century-advanced fuels, Fusion Technology, 39(2P2), 480-485 (2001).
 
15. K. Yoshikawa, et al., Research and development of a compact discharge-driven D–D fusion neutron source for explosive detection, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 261(1-2), 299-302 (2007).
 
16. R.W. Bussard, Waste Transmutation by High Flux DT Fusion Neutrons from Inertial Electrostatic Fusion (IEF) Systems, Global 1993 International Conference and Technology Exhibition on Future Nuclear Systems, Sep. 12-17, (1993).
 
17. K. Takakura, et al., Neutron Radiography Using Inertial Electrostatic Confinement (IEC) Fusion, Plasma and Fusion Research, 13, 2406075-2406075 (2018).
 
18. S. Bishnoi, et al, Fast Neutron Radiography With DT Neutron Generator, in Indian National Seminar and Exhibition on Non-Destructive Evaluation NDE, Dec, 68-73 (2016).
 
19. M. Bakr, et al, Characterization of an ultra-compact neutron source based on an IEC fusion device and its prospective applications in radiography, Fusion Engineering and Design, 167, 112346 (2021).
 
20. V. Damideh, et al., Experimental study of the Iranian inertial electrostatic confinement fusion device as a continuous neutron generator, Journal of Fusion Energy, 31(2), 109-111 (2012).
 
21. S. Agostinelli, et al, GEANT4-a simulation toolkitNIM A506 250–303, ed, (2003).
 
22. A. Bungau, et al., Proposal for an electron antineutrino disappearance search using high-rate li 8 production and decay, Physical Review Letters, 109(14), 141802 (2012).
 
23. I. Antcheva, et al., ROOT—A C++ framework for petabyte data storage, statistical analysis and visualization, Computer Physics Communications, 182(6), 1384-1385 (2011).