[1] IAEA, IAEA SSG-2, Deterministic Safety Analysis for Nuclear Power Plants, (2009).
[2] A. Petruzzi, F. D’Auria, W. Giannotti, Description of the procedure to qualify the nodalization and to analyze the code results, University of Pisa, DIMNP NT. 557(05) (2005).
[3] B. Clement, T. Haste, Thematic network for a Phebus FPT1 international standard problem (THENPHEBISP), Nucl. Eng. Des. 235 (2005) 347-357.
[4] R. Ashley, M. EL- Shanawany, F. Eltawila, F. D’Auria, Good Practices for User Effect Reduction, NEA/CSNI/R(98)22 (1999).
[5] R.O. Gauntt, M.T. Leonard, K. Ross, K.C. Wagner, State-of-the-Art Reactor Consequence Analyses Project, MELCOR Best Modeling Practices, NUREG-1935 (2010).
[6] INRA, Regulation for Licensing of IR-360 Nuclear Power Plant, INRA-NS-RE-052-10/1-1 (2007).
[7] Dino Alfonso Arano, Realization of a Methodology for the Assessment of Best estimate codes for the analysis of the nuclear systems (2008).
[8] IAEA, Accident Analysis for Nuclear Power Plant, IAEA-SRS-No.023 (2002).
[9] Lars Nilsson, Development of an Input Model to MELCOR 1.8.5 for the Ringhals 3 PWR, SKI Repot,2004:55 (2004).
[10] Lars Nilsson, Development of an Input Model to MELCOR 1.8.5 for Oskarshamn 3 BWR,SKI Repot,2007:05 (2007).
[11] J. Jafari, M. Boroushaki, F. D’Auria, S. Shahedi, Development of a qualified nodalization for small-break LOCA transient analysis in PSB-VVER integral test facility by RELAP5 system code, Nucl. Eng. Des. 240 (2010) 3309-3320.
[12] M, Saghafi, M.B. Ghofrani, Development and qualification of a Thermal-hydraulic Nodalization for modeling Station Blackout Accident in PSB-VVER Test Facility, Nucl. Eng. Des. 303 (2016) 109-121.
[13] V. Martinez-Quiroga, F. Reventos, The Use of System Codes in Scaling Studies: Relevant Techniques for Qualifying NPP Nodalizations, Sci. Technol. Nucl. Installations 138745 (2014) 1-16.
[14] R.O. Gaunt, Fukushima Accident Study Using MELCOR, SANDIA Report2012-6173, (2013).
[15] T. Sevon, Fukushima Daiichi Unit 2 Accident Analysis with MELCOR 2.1, SANDIA Report (2016).
[16] USNRC, State-of-the-Art Reactor Consequence Analyses (SOARCA) Report, Washington D.C., NUREG-1935 (2012).
[17] US NRC, Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants (1990).
[18] US NRC, State of the Art Reactor Consequence Analyses Project, 2 volumes, NUREG CR-7110 (2013).
[19] A. Prosek, F. D'Auria, B. Mavko, Review of quantitative accuracy assessments with fast fourier transform based method (FFTBM), Nucl. Eng. Des. 217 (2002) 179-206.
[20] F. Yousefpour, F. Shokri, H. Soltani, IR-360 nuclear power plant safety functions and component classification, Nucl. Eng. Des. 240 (2010) 2847-2861.
[21] SURENA, IR-360 Detail Design Documents (2016).
[22] SURENA, Verification & Validation of the MELCOR code for IR-360 Success Criteria Analysis (2013).
[23] R.O. Gaunt, J.E. Cash, R.K. Cole, C.M. Erickson, L.L. Humphries, B.R. Rodrigez, M.F. Young, MELCOR 1.8.6 Computer Code Manuals, 2 Volumes,SANDIA Lab. (2005).
[24] SURENA, IR-360 Technical Specification, (2016).
[25] J. Birchley, T.J. Haste, M. Richner, Accident Management following loss of residual heat removal during mid-loop operation of Westinghouse 2-loop PWR, Nucl. Eng. Des. 238 (2008) 2173-2181.
[26] A. Petruzzi, F. D'Auria, Thermal-Hydraulics System Codes in Nuclear Reactor Safety and Qualification Procedure, Sci. Technol. Nucl. Installations. DOI:10.1115/2008/460795 (2008) 1-16.