In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

Department of Nuclear Physics, Faculty of Physics, University of Kashan, P.O.Box: 87317-53153, Kashan – Iran

Abstract

The thermal quenching effect has not been considered in current research on the first-order kinetics of thermoluminescence. In contrast, thermal quenching as a reality should be contained in theoretical models. In this work, a new fitting function of the thermoluminescence glow curve in terms of peak temperature and intensity is obtained by considering the thermal quenching effect for the first-order kinetics model. The new function reduces to the known first-order fit function by removing thermal quenching parameters. The obtained function was applied to the glow curve of the CaF2:Mn (TLD-400) dosimeter. Since the new model differs from the known first-order fit function, different kinetic parameters extract as the result of the fitting procedure. As the new model involves the thermal quenching effect as a physical entity, the kinetic parameters obtained from the presented model are more accurate and realistic.

Highlights

  1. V.E. Kafadar, Thermal quenching of thermoluminescence in TLD-200, TLD-300 and TLD-400 after β-irradiation, Physica, B. 406(3), 537-540 (2011).

 

  1. S.G. Gorbics, A.E. Nash, F.H. Attix, Thermal quenching of luminescence in six thermoluminescent dosimetry phosphors II: Quenching of Thermoluminescence, Int. J. Appl. Radiat. Isotops, 20(12), 843-846 (1969).

 

  1. A. Kadari, D. Kadri, New numerical model for thermal quenching mechanism in quartz based on two-stage thermal stimulation of thermoluminescence model, Arab. J. Chem., 8(6), 798-802 (2015).

 

  1. B. Subedi, et al, Thermal quenching of thermoluminescence in quartz samples of various origin, Nucl. Instr. and meth., B, 269(6), 572-581 (2011).

 

  1. S. Harooni, M. Zahedifar, Z. Ahmadian, Determination of thermal quenching parameters of TLD-100 dosimeter, Iran. J. Radiat. Safety and Meas., 5(1), 29-34 (2017) (In Persian).

 

  1. S. Harooni, et al, A new thermoluminescence general order glow curve fit function considering thermal quenching effect, Radiat. Prot. Dosim., 187(2), 103-107 (2019).

 

  1. M.S. Akselrod, et al, Thermal quenching of F-center luminescence in Al2O3:C, J. Appl. Phys., 84(6), 3364-3373 (1998).

 

  1. J.T. Randall, M.H.F. Wilkins, Phosphorescence and electron traps: I. the study of trap distribution, Proc. Roy. Soc. London A, 184(999), 365-389 (1945).

 

  1. C.E. May, J.A. Partridge, Thermoluminescence kinetics of alpha irradiated alkali halides, J. Chem. Phys., 40(5), 1401-1415 (1964).

 

  1. R. Chen, S.W.S. McKeever, Theory of thermoluminescence and related phenomena, World Scientific, 44 (1997).

 

  1. G. Kitis, J.M. Gomez-Ros, J.W.N. Tuyn, Thermoluminescence glow curve deconvolution function for first, second and general orders of kinetics, J. phys. D. Appl. phys., 31(19), 2636-2641 (1998).

 

  1. B. Subedi, G. Kitis, V. Pagonis, Simulation of the influence of thermal quenching on the thermoluminescence glow-peaks, Phys. Status Solidi A, 207(5), 1216-1226 (2010).

 

  1. A.N. Yazici, M. Bedir, A.S. Sokucu, The analysis of dosimetric thermoluminescence glow peak of CaF2:Mn after β-irradiation, Nucl. Instr. and meth. B, 259(2), 955-965 (2007).

 

  1. H.G. Balian, N.W. Eddy, Figure of merit (FOM), and improved criterion over the normalized chi-squared test for assessing goodness of fit of gamma ray spectra peaks, Nucl. Instrum. Methods Phys. Res., 145(2), 389-395 (1977).

 

  1. S. Harooni, et al, Determination of thermal quenching parameters in CaF2: Mn(TLD-400) thermoluminescent dosimeter, J. Nucl. Sci. Technol., 41(3), 130-134 (2020) (In Persian).

Keywords

  1. V.E. Kafadar, Thermal quenching of thermoluminescence in TLD-200, TLD-300 and TLD-400 after β-irradiation, Physica, B. 406(3), 537-540 (2011).

 

  1. S.G. Gorbics, A.E. Nash, F.H. Attix, Thermal quenching of luminescence in six thermoluminescent dosimetry phosphors II: Quenching of Thermoluminescence, Int. J. Appl. Radiat. Isotops, 20(12), 843-846 (1969).

 

  1. A. Kadari, D. Kadri, New numerical model for thermal quenching mechanism in quartz based on two-stage thermal stimulation of thermoluminescence model, Arab. J. Chem., 8(6), 798-802 (2015).

 

  1. B. Subedi, et al, Thermal quenching of thermoluminescence in quartz samples of various origin, Nucl. Instr. and meth., B, 269(6), 572-581 (2011).

 

  1. S. Harooni, M. Zahedifar, Z. Ahmadian, Determination of thermal quenching parameters of TLD-100 dosimeter, Iran. J. Radiat. Safety and Meas., 5(1), 29-34 (2017) (In Persian).

 

  1. S. Harooni, et al, A new thermoluminescence general order glow curve fit function considering thermal quenching effect, Radiat. Prot. Dosim., 187(2), 103-107 (2019).

 

  1. M.S. Akselrod, et al, Thermal quenching of F-center luminescence in Al2O3:C, J. Appl. Phys., 84(6), 3364-3373 (1998).

 

  1. J.T. Randall, M.H.F. Wilkins, Phosphorescence and electron traps: I. the study of trap distribution, Proc. Roy. Soc. London A, 184(999), 365-389 (1945).

 

  1. C.E. May, J.A. Partridge, Thermoluminescence kinetics of alpha irradiated alkali halides, J. Chem. Phys., 40(5), 1401-1415 (1964).

 

  1. R. Chen, S.W.S. McKeever, Theory of thermoluminescence and related phenomena, World Scientific, 44 (1997).

 

  1. G. Kitis, J.M. Gomez-Ros, J.W.N. Tuyn, Thermoluminescence glow curve deconvolution function for first, second and general orders of kinetics, J. phys. D. Appl. phys., 31(19), 2636-2641 (1998).

 

  1. B. Subedi, G. Kitis, V. Pagonis, Simulation of the influence of thermal quenching on the thermoluminescence glow-peaks, Phys. Status Solidi A, 207(5), 1216-1226 (2010).

 

  1. A.N. Yazici, M. Bedir, A.S. Sokucu, The analysis of dosimetric thermoluminescence glow peak of CaF2:Mn after β-irradiation, Nucl. Instr. and meth. B, 259(2), 955-965 (2007).

 

  1. H.G. Balian, N.W. Eddy, Figure of merit (FOM), and improved criterion over the normalized chi-squared test for assessing goodness of fit of gamma ray spectra peaks, Nucl. Instrum. Methods Phys. Res., 145(2), 389-395 (1977).

 

  1. S. Harooni, et al, Determination of thermal quenching parameters in CaF2: Mn(TLD-400) thermoluminescent dosimeter, J. Nucl. Sci. Technol., 41(3), 130-134 (2020) (In Persian).