In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Author

Department of Physics, Faculty of Science, Razi University, P.O.Box: 6714967346, Kermanshah - Iran

Abstract

In the CMS detector, the branching fractions of Higgs boson to J/ψ(1S) and cc pairs have been measured equal to 1.8×10-3 and 2.89 × 10-2, respectively. Theoretically, one possible scenario for direct production J/ψ(1S) is that the Higgs boson initially decays into the pair of cc . Then, in the next step, each of the c and c directly fragments into J/ψ(1S) a meson. Based on this scenario, in this paper, the direct branching fractions of the standard model Higgs boson to J/ψ(1S) is calculated by direct fragmentation of c and c using of perturbative Quantum-Chromodynamics(pQCD) and also taking account the longitudinal and transverse polarization states J/ψ(1S). The results of our calculations for the direct branching fraction of the Higgs boson to a pair J/ψ(1S) equal to 1.562×10-3, agree well with the measured value in the CMS detector. Therefore, it can be concluded that the predominant contribution in the decay of the Higgs boson into the J/ψ(1S) meson is the direct fragment of c quark and antiquark c. 

Keywords

1. G. Aad, et al, (ATLAS Collaboration, CMS Collaboration), Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at   and 8 TeV, JHEP, 08, 45 (2016).
 
2. G. Aad, et al, (ATLAS Collaboration, CMS Collaboration), Combined measurement of the Higgs boson mass in pp collisions at   and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett., 114, 191803 (2015).
 
3. CMS Collaboration, Combined measurements of Higgs boson couplings in proton–proton collisions at , Eur. Phys. J. C., 79, 421 (2019).
 
4. M. Aaboud, et al, (The ATLAS Collaboration), Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Phys. Lett. B, 784, 173 (2018).
 
5. A.M. Sirunyan, et al, (CMS Collaboration), Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett., 121, 121801 (2018).
 
6. M. Aaboud, et al, (ATLAS Collaboration, Phys), Observation of  decays and VH production with the ATLAS detector, Phys. Lett. B, 786, 59 (2018).
 
7. S.Y. Choi, J.S. Lee, J.P. Park, Decays of higgs bosons in the standard model and beyond, Prog. Part. Nucl. Phys, 120, 103880 (2021).
 
8. A.M. Sirunyan, et al, (CMS Collaboration), Observation of the higgs boson decay to a pair of τ leptons with the CMS detector, Phys. Lett. B., 779, 283 (2018).
 
9. S. Heinemeyer, et al, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties: Report of the LHC Higgs Cross Section Working Group, CERN Report 2013, 004 (2013).
 
10. D. de Florian, et al, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, CERN Report 2017, 002 (2016).
 
11. V. Kartvelishvili, A.V. Luchinsky, A. A. Novoselov, Double vector quark in production in exclusive higgs boson decays, Phys. Rev. D., 79, 114015 (2009).
 
12. G. Bodwin, et al, Higgs boson decays to quarkonia and the  coupling, Phys. Rev. D., 88, 053003 (2013).
 
13. A.M. Sirunyan, et al, (CMS Collaboration), Search for higgs and Z boson decays to  or  pairs in the four-muon final state in proton-proton collisions at , Phys. Lett. B., 797, 134811 (2019).
 
14. M. Suzuki, Spin property of heavy hadron in heavy-quark fragmentation, Phys. Rev. D., 33, 676 (1986).
 
15. E. Bratten, T.C. Yuan, Gloun fragmentation into heavy quarkonium, Phys. Rev. Lett., 71, 1673 (1993).
 
16. E. Bratten, K.C. Cheung, T.C. Yuan, QCD fragmentation functions for Bc and Bc* production, Phys. Rev. D., 48, 5049 (1993).
 
17. E. Bratten, K.C. Cheung, T.C. Yuan,  Decay into charmonium via charm quark fragmentation, Phys. Rev. D., 48, 4230 (1993).
 
18. M.A. Gomshi Nobary, R. Sepahvand, Fragmentation production of triply heavy baryons at the CERN LHC, Phys. Rev. D., 71, 034024 (2005).
 
19. M.A. Gomshi Nobary, R. Sepahvand, An investigation of triply heavy baryon production at hadron colliders, Nucl. Phys. B., 741, 34 (2006).
 
20. R. Sepahvand, S. Dadfar, NLO corrections to c and b-quark fragmentation into j/ψ and γ, Phys. Rev. D., 95, 034012 (2017).
 
21. R. Sepahvand, S. Dadfar, One loop correction fragmentation function of 1S wave charmed mesons, Nucl. Phys. A., 960, 36 (2017).
 
22. G.R. Boroun, T. Osati, S. Zarrin, An approximation approach to the evolution of the fragmentation function, IJTP, 54, 3831 (2015).
 
23. P.A. Zyla, et al, Review of particle physics, Prog. Theor. Exp. Phys., 2020, 083C01 (2020).
 
24. D.S. Hawng, Gwang-Hee. Kim, Decay constant ratios  and   , Z. Phys., C76, 107 (1997).
 
25. M. Aaboud, et al, (The ATLAS collaboration), Evidence for the  decay with ATLAS detector, JHEP., 12, 024 (2017)