In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 1339-14155, Tehran - Iran

Abstract

Polymeric absorbers used in solar thermal collectors must have appropriate thermal and mechanical properties. In this work, polyethylene/graphite (PE/NG) nanocomposite was selected as polymeric absorber and the effect of radiation on the thermal and mechanical behavior of that has been investigated. PE/NG composites containing 0.05, 0.1 and 2.25% nanographite was prepared through melt extrusion process. The SEM images of the samples proved the fair dispersion of NG in polymer matrix. Then the samples were irradiated by electron beam at doses ranging from 100 to 200 kGy. The specimens were characterized by tensile testing, Differential Scanning Calorimetry (DSC) and FT-IR spectroscopy. The results show that nanocomposite containing 2.25% graphite irradiated at 100 kGy has the best tensile strength and thermal stability. The results of DSC show that the addition of 2.25% NG to polyethylene improves the melting point and thermal properties. DSC and carbonyl index results of this composite in accelerated aging condition display no remarkable changes occur in thermal performance and structure of composite during aging. Also, with addition of NG to PE the UV/Vis absorbance of the PE/NG nanocomposite increases. Altogether, the experimental results reveal PE/NG as suitable candidates for solar thermal absorbers.

Highlights

1. A.A. Zargar, J. Kazemi, Theoretical and experimental investigation of a flat plate solar thermal collector, M.S. Thesis (1391), Azad University, (In Persian).

 

2. M. Köhl, et al, Polymeric Materials for Solar Thermal Applications, (Wiley-VCH Verlag & Co. KGaA, Germany, 2012).

 

3. S.M. Tamboli, S.T. Mhaske, D.D. Kale, Crosslinked polyethylene, Indian J. Chem. Technol., 11, 853 (2004).

 

4. M. Kurzböck, G.M. Wallner, R.W. Lang, Black pigmented polypropylene materials for solar absorbers, Energy Procedia, 30, 438 (2012).

 

5. E. Jakab, M. Blazso´, The effect of carbon black on the thermal decomposition of vinyl polymers, J. Anal. Appl. Pyrol., 64, 263 (2002).

 

6. E. Jakab, M. Omastova´, Thermal decomposition of polyolefin/carbon black composites, J. Anal. Appl. Pyrol., 74, 204 (2005).

 

7. M. Povacz, G.M. Wallner, R.W. Lang, Black-pigmented polypropylene materials for solar thermal absorbers – Effect of carbon black concentration on morphology and performance properties, Sol. Energy, 110, 420 (2014).

 

8. A. Naz, A. Kausar, M. Siddiq, Influence of graphite filler on physicochemical characteristics of polymer/graphite composites: a review, Polym. Plast. Technol. Eng, 55, 604 (2016).

 

9. L. Wang, J. Hong, G. Chen, Comparison Study of Graphite Nanosheets and Carbon Black as Fillers for High Density Polyethylene, Poly. Eng. Sci, 50, 2176 (2010).

 

10. D. Kourtidou, et al., Graphite reinforced silane crosslinked high density polyethylene: The effect of filler loading on the thermal and mechanical properties, Polym. Compos, 1-17 (2020).

 

11. D. Kourtidou, et al., Non-isothermal crystallization kinetics of graphite-reinforced crosslinked high-density polyethylene composites, J. Therm. Anal. Calorim, 142, 1849 (2020).

 

12. A. Chapiro, Radiation chemistry of polymeric systems, Wiley-Interscience, New York, (1962).

 

13. A. Choudhury, et al, Effect of various nanofillers on thermal stability and degradation kinetics of polymer nanocomposites, J. Nanosci Nanotechnol, 10, 5056-71 (2010).

 

14. K. Schwarzenbach, et al, Plastics Additives, Handbook, Sixth Ed. Hanser, Munich, (2009).

 

15. M. Povacz, et al, Novel solar thermal collector systems in polymer design- part 3: aging behaviour of PP absorber materials, Energy Procedia, 91, 392 (2016)

Keywords

1. A.A. Zargar, J. Kazemi, Theoretical and experimental investigation of a flat plate solar thermal collector, M.S. Thesis (1391), Azad University, (In Persian).
 
2. M. Köhl, et al, Polymeric Materials for Solar Thermal Applications, (Wiley-VCH Verlag & Co. KGaA, Germany, 2012).
 
3. S.M. Tamboli, S.T. Mhaske, D.D. Kale, Crosslinked polyethylene, Indian J. Chem. Technol., 11, 853 (2004).
 
4. M. Kurzböck, G.M. Wallner, R.W. Lang, Black pigmented polypropylene materials for solar absorbers, Energy Procedia, 30, 438 (2012).
 
5. E. Jakab, M. Blazso´, The effect of carbon black on the thermal decomposition of vinyl polymers, J. Anal. Appl. Pyrol., 64, 263 (2002).
 
6. E. Jakab, M. Omastova´, Thermal decomposition of polyolefin/carbon black composites, J. Anal. Appl. Pyrol., 74, 204 (2005).
 
7. M. Povacz, G.M. Wallner, R.W. Lang, Black-pigmented polypropylene materials for solar thermal absorbers – Effect of carbon black concentration on morphology and performance properties, Sol. Energy, 110, 420 (2014).
 
8. A. Naz, A. Kausar, M. Siddiq, Influence of graphite filler on physicochemical characteristics of polymer/graphite composites: a review, Polym. Plast. Technol. Eng, 55, 604 (2016).
 
9. L. Wang, J. Hong, G. Chen, Comparison Study of Graphite Nanosheets and Carbon Black as Fillers for High Density Polyethylene, Poly. Eng. Sci, 50, 2176 (2010).
 
10. D. Kourtidou, et al., Graphite reinforced silane crosslinked high density polyethylene: The effect of filler loading on the thermal and mechanical properties, Polym. Compos, 1-17 (2020).
 
11. D. Kourtidou, et al., Non-isothermal crystallization kinetics of graphite-reinforced crosslinked high-density polyethylene composites, J. Therm. Anal. Calorim, 142, 1849 (2020).
 
12. A. Chapiro, Radiation chemistry of polymeric systems, Wiley-Interscience, New York, (1962).
 
13. A. Choudhury, et al, Effect of various nanofillers on thermal stability and degradation kinetics of polymer nanocomposites, J. Nanosci Nanotechnol, 10, 5056-71 (2010).
 
14. K. Schwarzenbach, et al, Plastics Additives, Handbook, Sixth Ed. Hanser, Munich, (2009).
 
15. M. Povacz, et al, Novel solar thermal collector systems in polymer design- part 3: aging behaviour of PP absorber materials, Energy Procedia, 91, 392 (2016)