In cooperation with the Iranian Nuclear Society

Study of Electromagnetic Transitions for Odd 185-187-189Osmium

Document Type : Research Paper

Authors

1 Department of Physics, Mashhad Branch, Islamic Azad University, P.O.Box: 91735-413, Mashhad - Iran

2 Department of Physics, Payame Noor University, P.O.Box: 91735-433, Mashhad - Iran

Abstract
In this paper, Yrast spectrum and the ratio of the electromagnetic reduced transition probability, B(M1)/B(E2) has been calculated up to the spins 47/2+,33/2+ and 31/2+ for 185-187-189Os isotopes using projected shell model, respectively. In the B(M1)/B(E2) ratio were observed great drops in spins 39/2+, 33/2+ and 29/2+ that corresponds to decreases the nuclear rotation that can be the reason of band crossing of three quasi-particles with single-particle neutron band in yrast spectra. Finally, in general, it is observed that with increasing number of nucleons, the trend of increasing the ratio of electromagnetic transitions is the and for the second one only for 189Os isotope after spin 39/2+, rotation and magnetic properties of nucleus increases.

Highlights

1. A. Bohr, B. Mottelson, Nuclear Structure, Vol. II, Sec 4, (World Scientific, Singapore/New Jersey/ London/Hong Kong, 1998).

 

2. S.G. Nilsson, Binding states of the Individual in Strongly Deformed Nuclei, Math. Phys. Med., 16, 3 (1955).

 

3. K. Hara, Y. Sun, Projected Sell Model and High-Spin Spectroscopy, Int. J. Mod. Phys, E 4, 637 (1995).

 

4. Y. Sun, K. Hara, Fortran Code of the projected shell model: feasible shell model calculations for heavy nuclei, Comput. Phys. Commun., 104, 245 (1997).

 

5. B. Slathia, R. Devi, S.K. Khosa, Projected shell model study of band spectra and electromagnetic properties of 160–164Ho, Nucl. Phys A, 943, 39 (2015).

 

6. T. Shizuma, et al, High-Spin structure in 185Os, Phys. Rev. C., 69, 024305, (2004).

 

7. P. Verma, et al, Projected shell model study of quasiparticle structure of arsenic isotopes, Nucl. Phys A, 918, 24 (2013).

 

8. G. Krishan, et al, Study of neutron-rich Mo isotopes by the projected model approach, Pramana, 83, 341, (2014).

 

9. D. Ram, R. Devi, S.K. Khosa, Microscopic syudy of positive-parity yrast bands of 224-238Th isotopes, Pramana, 80, 341 (2013).

 

10. R. Devi, B.D. Sehgal, S.K. Khosa, Projected shell model description og high spin states in 124Ce, Phys Rev C, 72, 064304 (2005).

 

11. M. Shahriarie, S. Mohammadi, Z. Firouzi, Study of Back Bending in 157;158Er Isotopes by Using Electromagnetic Reduced Transition Probabilities, J. Korean Phys. Soc., 76, 8 (2020).

 

12. M. Moonesi, A. Haghpeima, M. Shahriarie, Study of the nucleon‑rich effect in 158Er and 185Os rare‑earth nuclei using the projected shell model, J. Korean Phys. Soc., 76, 8 (2020).

 

13. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of Superconductivity, Phys. Rev., 108, 1175 (1957).

 

14. P. Möller, et al, Nuclear ground-state masses and deformations: FRDM (2012), Atomic Data and Nuclear Data Tables, 109, 1 (2016).

 

15. J.A. Sheikh, Y. Sun, P.M. Walker, Projected shell model analysis of tilted rotation, Phys. Rev. C, 75, 26 (1998).

 

16. Y. Sun, J. Egido, Angular-Momentum-Projected description of the yrast line of dysprosium isotopes, Nucl. Phys., A 580, 1 (1994).

 

17. A. Bohr, B.R. Mottelson, Nuclear Structure (World Scientific, Singapore/New Jersey/ London/ Hong Kong, 1998), Vol. I, Sec. 3 (1998).

 

18. B. Castel, I.S. Towner, Modern Theories of Nuclear Moments, Sec. 3 and 4 (Clarendon Press, Oxford,1990).

 

19. B. Alex, Lecture Notes in Nuclear Structure Physics, Sec. 4 (National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan, 2005).

Keywords


1. A. Bohr, B. Mottelson, Nuclear Structure, Vol. II, Sec 4, (World Scientific, Singapore/New Jersey/ London/Hong Kong, 1998).
 
2. S.G. Nilsson, Binding states of the Individual in Strongly Deformed Nuclei, Math. Phys. Med., 16, 3 (1955).
 
3. K. Hara, Y. Sun, Projected Sell Model and High-Spin Spectroscopy, Int. J. Mod. Phys, E 4, 637 (1995).
 
4. Y. Sun, K. Hara, Fortran Code of the projected shell model: feasible shell model calculations for heavy nuclei, Comput. Phys. Commun., 104, 245 (1997).
 
5. B. Slathia, R. Devi, S.K. Khosa, Projected shell model study of band spectra and electromagnetic properties of 160–164Ho, Nucl. Phys A, 943, 39 (2015).
 
6. T. Shizuma, et al, High-Spin structure in 185Os, Phys. Rev. C., 69, 024305, (2004).
 
7. P. Verma, et al, Projected shell model study of quasiparticle structure of arsenic isotopes, Nucl. Phys A, 918, 24 (2013).
 
8. G. Krishan, et al, Study of neutron-rich Mo isotopes by the projected model approach, Pramana, 83, 341, (2014).
 
9. D. Ram, R. Devi, S.K. Khosa, Microscopic syudy of positive-parity yrast bands of 224-238Th isotopes, Pramana, 80, 341 (2013).
 
10. R. Devi, B.D. Sehgal, S.K. Khosa, Projected shell model description og high spin states in 124Ce, Phys Rev C, 72, 064304 (2005).
 
11. M. Shahriarie, S. Mohammadi, Z. Firouzi, Study of Back Bending in 157;158Er Isotopes by Using Electromagnetic Reduced Transition Probabilities, J. Korean Phys. Soc., 76, 8 (2020).
 
12. M. Moonesi, A. Haghpeima, M. Shahriarie, Study of the nucleon‑rich effect in 158Er and 185Os rare‑earth nuclei using the projected shell model, J. Korean Phys. Soc., 76, 8 (2020).
 
13. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of Superconductivity, Phys. Rev., 108, 1175 (1957).
 
14. P. Möller, et al, Nuclear ground-state masses and deformations: FRDM (2012), Atomic Data and Nuclear Data Tables, 109, 1 (2016).
 
15. J.A. Sheikh, Y. Sun, P.M. Walker, Projected shell model analysis of tilted rotation, Phys. Rev. C, 75, 26 (1998).
 
16. Y. Sun, J. Egido, Angular-Momentum-Projected description of the yrast line of dysprosium isotopes, Nucl. Phys., A 580, 1 (1994).
 
17. A. Bohr, B.R. Mottelson, Nuclear Structure (World Scientific, Singapore/New Jersey/ London/ Hong Kong, 1998), Vol. I, Sec. 3 (1998).
 
18. B. Castel, I.S. Towner, Modern Theories of Nuclear Moments, Sec. 3 and 4 (Clarendon Press, Oxford,1990).
 
19. B. Alex, Lecture Notes in Nuclear Structure Physics, Sec. 4 (National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan, 2005).