In cooperation with the Iranian Nuclear Society

Document Type : Scientific Note

Authors

1 Atomic and Molecular Physics Group, Department of Physics, Tarbiat Modares University, P.O.Box: 175-14115, Tehran - Iran

2 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran, Iran

Abstract

In this article, the behavior of a short pulse, pre-ionized flashlamp for pumping the laser-induced plasma has been experimentally studied. The total discharged energy is nearly 2 joules to generate 1 microsecond optical pulses. For this means, an especially designed discharge circuit with a single high voltage switch where consists of three trigatron switches in series was implemented. The observations show that the flashlamp doesn’t obey the classical Goncz’s V-I characteristics with a constant  under experimental conditions. The flashlamp behavior can be more suitably described with a Freundlich’s equation. Moreover, the parameter is a function of the discharge current with a different behavior on the leading and falling edges of the current pulse. The shortest flashlamp optical pulses were achieved with about 5 microseconds delay time among the pre-ionization and the main discharge of flashlamp.

Highlights

1. J.L. Emmett, A.L. Schawlow, Enhanced ultraviolet output from double-pulsed flashlamps, Appl. Phys. Lett., 2, 11, 204 (1963).

 

2. M.H. Ornstein, V.E. Derr, Prepulse enhancement of flashlamp pumped dye laser, Appl. Opt., 13, 9, 2100 (1974).

 

3. B.L. Zhu, H.F. Liu, H.L. Zhou, Pre-pulse flash lamp pumped Ti:Sapphire tunable laser, Opt. Tech., 1, 79, 2 (1999).

 

4. W. Koechner, Solid-State Laser Engineering, 6 th ed., Springer (2006).

 

5. F. Tahsildaran, A.H. Farahbod, R. Malekfar, System of short pulse flashlamps for optical pumping of a laser-induced plasma, Iranian conference of optics and photonics, 25 th, Shiraz university, Shiraz (2018).

 

6. R.G. Hohlfeld, W. Manning, D.A. MacLennan, Self-inductance effects in linear flashtubes: an extension to Markiewicz and Emmett theory, Appl. Opt., 22, 13, 1986 (1983).

 

7. A.J.W. Brown, C.H. Fisher, A 6.5 J flashlamp pumped Ti:Al2O3 laser, IEEE Journal of Quantum Electronics, 29, 9, 2513 (1993).

 

8. J.H. Goncz, Resistivity of xenon plasma, Journal of Applied Physics, 36, 742 (1965).

 

9. J.P. Markiewicz, J.L. Emmett, Design of flashlamp driving circuits, IEEE Journal of Quantum Electronics, QE-2, 11, 707 (1966).

 

10. H. Freundlich, Über die Adsorption in Lösungen, Zeitschrift für Physikalische Chemie – Stöchiometrie und Verwandschaftslehre., 57, 4, 385 (1907).

 

11. A. Marotta, C.A. Arguello, A simmered pre-pulsed flashlamp dye laser, J. Phys. E: Sci. Instrum., 9, 478 (1976).

 

12. J.A. Mroczkowski, R.H. Milburn, Double pulse laser flashlamp pumping and a new method of flashlamp triggering, Rev. Sci. Instrum., 48, 12, 1555 (1977).

 

13. A. Hirth, R. Meyer, K. Schetter, On the proper choice of the preionization mode of linear flashlamps, Opt. Commun., 35, 2, 255 (1980).

 

14. I.J. Rasiah, B.C. Tan, H.W. Lee, Voltage-current relationship for flashlamps: an empirical approach, Appl. Opt., 30, 4, 485 (1991).

 

15. J.T. Lue, D.Y. Song, C.K. Yeh, The plasma Z-pinch effect on the I-V characteristic of fast discharge flash tubes, J. Appl. Phys., 51, 4626 (1980).

 

16. W. Lei, et al, Research and design on power system of microsecond xenon-lamp-pumped dye lasers, Academic International Symposium on Optoelectronics and Microelectronics Technology, Harbin, China (2011).

Keywords

1. J.L. Emmett, A.L. Schawlow, Enhanced ultraviolet output from double-pulsed flashlamps, Appl. Phys. Lett., 2, 11, 204 (1963).
 
2. M.H. Ornstein, V.E. Derr, Prepulse enhancement of flashlamp pumped dye laser, Appl. Opt., 13, 9, 2100 (1974).
 
3. B.L. Zhu, H.F. Liu, H.L. Zhou, Pre-pulse flash lamp pumped Ti:Sapphire tunable laser, Opt. Tech., 1, 79, 2 (1999).
 
4. W. Koechner, Solid-State Laser Engineering, 6 th ed., Springer (2006).
 
5. F. Tahsildaran, A.H. Farahbod, R. Malekfar, System of short pulse flashlamps for optical pumping of a laser-induced plasma, Iranian conference of optics and photonics, 25 th, Shiraz university, Shiraz (2018).
 
6. R.G. Hohlfeld, W. Manning, D.A. MacLennan, Self-inductance effects in linear flashtubes: an extension to Markiewicz and Emmett theory, Appl. Opt., 22, 13, 1986 (1983).
 
7. A.J.W. Brown, C.H. Fisher, A 6.5 J flashlamp pumped Ti:Al2O3 laser, IEEE Journal of Quantum Electronics, 29, 9, 2513 (1993).
 
8. J.H. Goncz, Resistivity of xenon plasma, Journal of Applied Physics, 36, 742 (1965).
 
9. J.P. Markiewicz, J.L. Emmett, Design of flashlamp driving circuits, IEEE Journal of Quantum Electronics, QE-2, 11, 707 (1966).
 
10. H. Freundlich, Über die Adsorption in Lösungen, Zeitschrift für Physikalische Chemie – Stöchiometrie und Verwandschaftslehre., 57, 4, 385 (1907).
 
11. A. Marotta, C.A. Arguello, A simmered pre-pulsed flashlamp dye laser, J. Phys. E: Sci. Instrum., 9, 478 (1976).
 
12. J.A. Mroczkowski, R.H. Milburn, Double pulse laser flashlamp pumping and a new method of flashlamp triggering, Rev. Sci. Instrum., 48, 12, 1555 (1977).
 
13. A. Hirth, R. Meyer, K. Schetter, On the proper choice of the preionization mode of linear flashlamps, Opt. Commun., 35, 2, 255 (1980).
 
14. I.J. Rasiah, B.C. Tan, H.W. Lee, Voltage-current relationship for flashlamps: an empirical approach, Appl. Opt., 30, 4, 485 (1991).
 
15. J.T. Lue, D.Y. Song, C.K. Yeh, The plasma Z-pinch effect on the I-V characteristic of fast discharge flash tubes, J. Appl. Phys., 51, 4626 (1980).
 
16. W. Lei, et al, Research and design on power system of microsecond xenon-lamp-pumped dye lasers, Academic International Symposium on Optoelectronics and Microelectronics Technology, Harbin, China (2011).