In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

1 Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box:11365-8486, Tehran - Iran

2 Department of the Energy Engineering and Physics, Amirkabir University of Technology, P.O.Box: 15875-4413, Tehran - Iran

Abstract

In this paper, the plasma of a 2.45 GHz permanent magnet miniature ECR ion source has been simulated and discussed. The source with a cylindrical plasma chamber of 50 mm in radius, 50 mm in length, and a maximum input power of 1kW generates a 10 mA, 50 kV proton beam. Considering the long wavelength of the microwave generator (λ0 = 122.4 mm) and the miniature size of the plasma chamber, an alumina window with a relative permittivity of 9 is hired at the entrance of the plasma chamber. Microwave power is injected into the chamber through the window. Microwave power transfer and coupling to the miniaturized plasma chamber of the ion source is the focus of this study. In this way, the strength of the magnetic field, microwave electric field, and spatial and temporal variations of the essential parameters like the density of the microwave power absorption, the Upper Hybrid Resonance (UHR) layer, density, and temperature of the plasma at the starting time of the microwave injection to the ion source chamber are investigated.

Highlights

  1. R. Gobin, et al., A 140 mA cw deuteron electron cyclotron resonance source for the IFMIF-EVEDA project, Review of Scientific Instruments, 79(2), 02B303 (2008).

 

  1. S. Peng, et al., Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation, Review of Scientific Instruments, 87(2), 02A706 (2016).

 

  1. M. Shimada, I. Watanabe, Y. Torii, Compact electron cyclotron resonance ion source with high density plasma, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 9(3), 707-710 (1991).

 

  1. N. Yamamoto, et al, Effects of magnetic field configuration on thrust performance in a miniature microwave discharge ion thruster, Journal of Applied Physics, 102(12), 123304 (2007).

 

  1. B. Zhang, X. Zhang, Modeling of plasma density, argon ion energy and ion velocity functions in a dipolar electron cyclotron resonance plasma source, Vacuum, 174, 109215 (2020).

 

  1. S. Peng, et al., Possibility of generating H+, or H2+, or H3+ dominated ion beams with a 2.45 GHz permanent magnet ECR ion source, Review of Scientific Instruments, 90(12), 123305 (2019).

 

  1. O. Waldmann, B. Ludewigt, A Permanent‐Magnet Microwave Ion Source For A Compact High‐Yield Neutron Generator, in AIP Conference Proceedings, American Institute of Physics, 1336(1), 479-482 (2011).

 

  1. R. Swaroop, et al, Design and development of a compact ion implanter and plasma diagnosis facility based on a 2.45 GHz microwave ion source, Review of Scientific Instruments, 92(5), 053306 (2021).

 

  1. A. Misra, V. Pandit, Studies on the coupling transformer to improve the performance of microwave ion source, Review of Scientific Instruments, 85(6), 063301 (2014).

 

  1. N. Kumar, et al., A compact 2.45 GHz microwave ion source based high fluence irradiation facility at IUAC, DELHI, (2014).

 

  1. H. Ren, et al., Plasma studies of the permanent magnet electron cyclotron resonance ion source at Peking University, Review of Scientific Instruments, 85(2), 02A927 (2014).

 

  1. S. Peng, et al., Plasma simulation and optimization for a miniaturized antenna ECR ion source, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1011, 165586 (2021).

 

  1. V. Mironov, et al, Three-dimensional modelling of processes in electron cyclotron resonance ion source, Journal of Instrumentation, 15(10), P10030 (2020).

 

  1. J.-M. Wen, et al., A miniaturized 2.45 GHz ECR ion source at Peking University, Chinese Physics B, 27(5), 055204 (2018).

 

  1. M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and materials processing, John Wiley & Sons, (2005).

 

  1. D. Hemmers, et al, Self-consistent modelling of overdense plasmas in ECR discharges, Journal of Physics D: Applied Physics, 31(17), 2155 (1998).

 

  1. R. Porteous, H.-M. Wu, D. Graves, A two-dimensional, axisymmetric model of a magnetized glow discharge plasma, Plasma Sources Science and Technology, 3(1), 25 (1994).

 

  1. M.A. Hussein, G. Emmert, Modeling of plasma flow downstream of an electron cyclotron resonance plasma source, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 8(3), 2913-2918 (1990).

 

  1. V.P. Gopinath, T.A. Grotjohn, Three-dimensional electromagnetic PIC model of a compact ECR plasma source, IEEE Transactions on Plasma Science, 23(4), 602-608 (1995).

 

  1. W.H. Koh, et al, Electromagnetic particle simulation of electron cyclotron resonance microwave discharge, Journal of Applied Physics, 73(9), 4205-4211 (1993).

 

  1. Y. Weng, M.J. Kushner, Electron energy distributions in electron cyclotron resonance discharges for materials processing, Journal of Applied Physics, 72(1), 33-42 (1992).

 

  1. D. Mascali, et al., 3D-full wave and kinetics numerical modelling of electron cyclotron resonance ion sources plasma: steps towards self-consistency, The European Physical Journal D, 69(1), 1-9 (2015).

 

  1. D. Mascali, et al., Modelling RF-plasma interaction in ECR ion sources, in EPJ Web of Conferences, EDP Sciences, 157, 03054 (2017).

 

  1. G. Hagelaar, et al, Modelling of a dipolar microwave plasma sustained by electron cyclotron resonance, Journal of Physics D: Applied Physics, 42(19), 194019 (2009).

 

  1. www.comsol.com.

 

  1. H. Ren, et al., Intense beams from gases generated by a permanent magnet ECR ion source at PKU, Review of Scientific Instruments, 83(2), 02B905 (2012).

 

  1. O. Popov, Characteristics of electron cyclotron resonance plasma sources, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 7(3), 894-898 (1989).

 

  1. Z. Song, et al., Minipermanent magnet high-current microwave ion source, Review of Scientific Instruments, 77(3), 03A305 (2006).

 

  1. H. Sang, et al, Comparison study of different plasma chamber of microwave ion source for intense neutron tube, J. Northeast Normal University, 33(2), 27-32 (2001).

 

  1. R. Geller, Electron cyclotron resonance ion sources and ECR plasmas, Routledge, (2018).

 

  1. C. Mallick, M. Bandyopadhyay, R. Kumar, Plasma characterization of a microwave discharge ion source with mirror magnetic field configuration, Review of Scientific Instruments, 89(12), 125112 (2018).

 

  1. R.L. Kinder, M.J. Kushner, Consequences of mode structure on plasma properties in electron cyclotron resonance sources, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17(5), 2421-2430 (1999).

 

  1. D. Mascali, et al., Electrostatic wave heating and possible formation of self-generated high electric fields in a magnetized plasma, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 653(1), 11-16 (2011).

Keywords

  1. R. Gobin, et al., A 140 mA cw deuteron electron cyclotron resonance source for the IFMIF-EVEDA project, Review of Scientific Instruments, 79(2), 02B303 (2008).

 

  1. S. Peng, et al., Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation, Review of Scientific Instruments, 87(2), 02A706 (2016).

 

  1. M. Shimada, I. Watanabe, Y. Torii, Compact electron cyclotron resonance ion source with high density plasma, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 9(3), 707-710 (1991).

 

  1. N. Yamamoto, et al, Effects of magnetic field configuration on thrust performance in a miniature microwave discharge ion thruster, Journal of Applied Physics, 102(12), 123304 (2007).

 

  1. B. Zhang, X. Zhang, Modeling of plasma density, argon ion energy and ion velocity functions in a dipolar electron cyclotron resonance plasma source, Vacuum, 174, 109215 (2020).

 

  1. S. Peng, et al., Possibility of generating H+, or H2+, or H3+ dominated ion beams with a 2.45 GHz permanent magnet ECR ion source, Review of Scientific Instruments, 90(12), 123305 (2019).

 

  1. O. Waldmann, B. Ludewigt, A Permanent‐Magnet Microwave Ion Source For A Compact High‐Yield Neutron Generator, in AIP Conference Proceedings, American Institute of Physics, 1336(1), 479-482 (2011).

 

  1. R. Swaroop, et al, Design and development of a compact ion implanter and plasma diagnosis facility based on a 2.45 GHz microwave ion source, Review of Scientific Instruments, 92(5), 053306 (2021).

 

  1. A. Misra, V. Pandit, Studies on the coupling transformer to improve the performance of microwave ion source, Review of Scientific Instruments, 85(6), 063301 (2014).

 

  1. N. Kumar, et al., A compact 2.45 GHz microwave ion source based high fluence irradiation facility at IUAC, DELHI, (2014).

 

  1. H. Ren, et al., Plasma studies of the permanent magnet electron cyclotron resonance ion source at Peking University, Review of Scientific Instruments, 85(2), 02A927 (2014).

 

  1. S. Peng, et al., Plasma simulation and optimization for a miniaturized antenna ECR ion source, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1011, 165586 (2021).

 

  1. V. Mironov, et al, Three-dimensional modelling of processes in electron cyclotron resonance ion source, Journal of Instrumentation, 15(10), P10030 (2020).

 

  1. J.-M. Wen, et al., A miniaturized 2.45 GHz ECR ion source at Peking University, Chinese Physics B, 27(5), 055204 (2018).

 

  1. M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and materials processing, John Wiley & Sons, (2005).

 

  1. D. Hemmers, et al, Self-consistent modelling of overdense plasmas in ECR discharges, Journal of Physics D: Applied Physics, 31(17), 2155 (1998).

 

  1. R. Porteous, H.-M. Wu, D. Graves, A two-dimensional, axisymmetric model of a magnetized glow discharge plasma, Plasma Sources Science and Technology, 3(1), 25 (1994).

 

  1. M.A. Hussein, G. Emmert, Modeling of plasma flow downstream of an electron cyclotron resonance plasma source, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 8(3), 2913-2918 (1990).

 

  1. V.P. Gopinath, T.A. Grotjohn, Three-dimensional electromagnetic PIC model of a compact ECR plasma source, IEEE Transactions on Plasma Science, 23(4), 602-608 (1995).

 

  1. W.H. Koh, et al, Electromagnetic particle simulation of electron cyclotron resonance microwave discharge, Journal of Applied Physics, 73(9), 4205-4211 (1993).

 

  1. Y. Weng, M.J. Kushner, Electron energy distributions in electron cyclotron resonance discharges for materials processing, Journal of Applied Physics, 72(1), 33-42 (1992).

 

  1. D. Mascali, et al., 3D-full wave and kinetics numerical modelling of electron cyclotron resonance ion sources plasma: steps towards self-consistency, The European Physical Journal D, 69(1), 1-9 (2015).

 

  1. D. Mascali, et al., Modelling RF-plasma interaction in ECR ion sources, in EPJ Web of Conferences, EDP Sciences, 157, 03054 (2017).

 

  1. G. Hagelaar, et al, Modelling of a dipolar microwave plasma sustained by electron cyclotron resonance, Journal of Physics D: Applied Physics, 42(19), 194019 (2009).

 

  1. www.comsol.com.

 

  1. H. Ren, et al., Intense beams from gases generated by a permanent magnet ECR ion source at PKU, Review of Scientific Instruments, 83(2), 02B905 (2012).

 

  1. O. Popov, Characteristics of electron cyclotron resonance plasma sources, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 7(3), 894-898 (1989).

 

  1. Z. Song, et al., Minipermanent magnet high-current microwave ion source, Review of Scientific Instruments, 77(3), 03A305 (2006).

 

  1. H. Sang, et al, Comparison study of different plasma chamber of microwave ion source for intense neutron tube, J. Northeast Normal University, 33(2), 27-32 (2001).

 

  1. R. Geller, Electron cyclotron resonance ion sources and ECR plasmas, Routledge, (2018).

 

  1. C. Mallick, M. Bandyopadhyay, R. Kumar, Plasma characterization of a microwave discharge ion source with mirror magnetic field configuration, Review of Scientific Instruments, 89(12), 125112 (2018).

 

  1. R.L. Kinder, M.J. Kushner, Consequences of mode structure on plasma properties in electron cyclotron resonance sources, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17(5), 2421-2430 (1999).

 

  1. D. Mascali, et al., Electrostatic wave heating and possible formation of self-generated high electric fields in a magnetized plasma, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 653(1), 11-16 (2011).