In cooperation with the Iranian Nuclear Society

Defect Detection and Contrast Improvement of Radiographic Images using Nonlinear Diffusion Filter Method


[1] C. Knaus, M. Zwicker, Progressive image denoising, IEEE T. Imag. Process. 99 (2014) DOI: 10.1109/TIP.2014.2326771.
 
[2] A. Movafeghi, Using empirical mode decomposition and a fuzzy algorithm for the analysis of weld defect images, Insight 57(1) (2015) 35-39.
 
[3] R.R. Da Silva, L.P. Galoba, M.H.S. Siqueira, J.M.A. Rebello, Pattern recognition of weld defects detected by radiographic tests, NDT&E Int. 37 (2004) 461-470.
 
[4] Ch. Dang, J. Gao, Zh. Wang, Y. Xiao, Y. Zhao, A novel method for detecting weld defects accurately and reliably in radiographic images, Insight 58(1) (2016) 28-34.
 
[5] M.A. Carrasco, D. Mery, Segmentation of welding defects using a robust algorithm, Mater. Eval. 62(11) (2004) 1142-1147.
 
[6] D. Mery, Computer Vision for X-ray Testing, Springer (2015).
 
[7] H.I. Shafeek, E.S. Gadelmava, A.A. Abdel-Shafy, I.M. Elewa, Assessment of welding defects for gas pipeline radiographs using computer vision, NDT&E Int. 37 (2004) 291-299.
 
[8] A. Movafeghi, E. Yahaghi, N. Mohammadzadeh, Defect Detection Improvement of Digitised Radiographs by Principal Component Analysis with Local Pixel Grouping, J. Nondestruct. Eval. 34(17) (June 2015) DOI: 10.1007/s10921-015-0290-z.
[9] S.S. Lee, Thickness evaluation of pipes using density profile on radiographs, in 10th Asia-Pacific Conference on Non-Destructive Testing, Brisbane, Australia, (2001) 17-21.
 
[10] P.N. Jebarani Sargunar, R. Sukanesh, Automatic detection of weld defects in pressure vessels using fuzzy neural network, International Journal of Computer Applications 1(21) (2010) 0975- 8887.
 
[11] T.Y. Lim, M.M. Ratnam, M.A. Khalid, Automatic classification of weld defects using simulated data and an MLP neural network, Insight 49 (March 2007) 154-159.
 
[12] J. Weickert, B.M. Ter Haar Romeny, M. Viergever, Efficient and reliable schemes for nonlinear diffusion filtering, IEEE T. Imag. Process. 7(3) (Mar 1998) 398-410.
 
[13] K. He, J. Sun, X. Tang, Guided image filtering, IEEE Trans. Pattern Anal. Machine Intell. 35 (2013) 1397–1409.
 
[14] E. Nadernejad, H. Hassanpour, Evaluating diffusion-based image de-noising techniques, in Proc. Int. Conf. on Intelligent & Advance Systems ICIAS, pp. 565-570, Kuala Lumpur, Malaysia, Nov. (2007) 25-28.
 
[15] H. Hassanpour, E. Nadernejad, H. Miar, Image restoration using a PDE-based approach, IJE Transactions B: Applications 20(3) Dec. (2007) 225-236.
 
[16] J. Mahipal, S.K. Sharma, S. Sundar, On a generalized 5×5 stencil scheme for nonlinear diffusion filtering, International Journal of Advances in Engineering Sciences and Applied Mathematics 8 (3) (2016) 194-206.
 
[17] M. Ghisi, M. Gobbino, A class of local classical solutions for the one dimensional Perona-Malik equation, Journal: Transaction of the American MathematicalSociety 361 (2009) 6429-6446.
 
[18] Marina Ghisi, Massimo Gobbino, An example of global classical solution for the Perona-Malik equation, arXiv:0907.0772v1 (2009).
[19] A. Shigeru, Consistent Gradient Operators, IEEE T. Pattern Anal. 22(3) (2000).
 
[20] R.C. Gonzalez, R.E. Woods, Digital Image Processing, Pearson Education Hall (2008).
 
[21] INRA- Iran Nuclear Regulatory Authority, Basic Radiation Safety Standards (1999).
 
[22] ISIRI-Institute of Standards and Industrial Research of Iran, Protection against ionizing radiation and the safety of radiation Sources- Basic standards, No 7751 (in Persian) (2005).