In cooperation with the Iranian Nuclear Society

Experimental investigation of the effects of the gas mixture on the CO2 lasers Pulse shape

Document Type : Scientific Note

Authors

1 Photonic and Quantum Technologies Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 14395-836, Tehran - Iran

2 Physics Department, Iran University of Science and Technology, Postal Code: 1684613114, Tehran - Iran

Abstract
This work investigates the effects of different operational parameters on the pulse shape of a homemade high repetition rate (1 kHz) pulsed CO2 laser. Various parameters such as the ratio of N2 and He in the laser gas mixture and the reflectivity of the laser front mirror have changed. Then, the energy and shape of the laser pulses were recorded and analyzed. It showed that by varying the ratios of N2 and He in the laser gas mixture, the time duration of the spike and tail parts of the laser pulses can be changed in 95-140 ns and 1.5-3.5 µs range, respectively. In addition, we found that when the reflectivity of the cavity front mirror increases from 50% up to 80%, the spike duration increases from 50 ns up to 90 ns, and the tail duration decreases from 4.8 µs to 2.5 µs.

Highlights

1. J. Witteman, The CO2 Laser, Springer Series in Optical Science, 53, (1987).

 

2. Ed. By M. Endo, et al., Gas Lasers, Taylor and Francis Group, USA, (2007).

 

3. D.J. Biswas, et al., Multiline CO2 Lasers and Their Uses, Prog. Quant. Electr., 14, 1-61 (1990).

 

4. D.J. Biswas, J.P. Nilaya, Repetitive Transversely Excited Gas Laser Pulsers, Prog. Quant. Electr., 26, 1-63 (2002).

 

5. I. Kitazima, Effects of Foreign Gases on the Pulsed Operation of a CO2 Laser, J. Appl. Phys., 45, 2997 (1974).

 

6. M.V. Ivashchenkov, et al., Short Pulse Formation in a TEA CO2 Laser Using CO2-N2-H2 Gas Mixture, Quant. Electron., 31, 965 (2001).

 

7. M. Zand, et al., A 490 W Transversely Txcited Atmospheric CO2 Spark Gap Laser with Added H2, Laser. Phys., 28, 025002 (2018).

 

8. S. Beheshtipour, et al., The effects of Focusing power on TEA CO2 Laser-Induced Breakdown and the Consequent Pulse Shaping effects, Physics of Plasmas, 25, 023105 (2018).

 

9. L.W. Casperson, Analytic Modeling of Gain-Switched Lasers. I. Laser Oscillators, J. App. Phys., 47, 4555-4562 (1976).

 

10. K. Smith, R.M. Thomson, Computer Modeling of Gas Lasers, Springer Scince+Business Media, New York, (1978).

 

11. A.M. Koushki, et al., Kinetic modeling of a Pulsed CO2 Lasers, Lasers Engineer, 2, 265-280 (2011).

 

12. R. Torabi, et al., Simulation and Initial Experiments of a High Power Pulsed TEA CO2 Lasers, Physica Scripta., 91, 015501 (2015).

 

13. R. Torabi, et al., Theoreticl and Experimental Analysis of the TEA CO2 Laser Dynamics by six Temperature Vibrational–Rotational Model, Optik, 135, 238-243 (2017).

 

14. K. Silakhori, et al., High Repetition rate Pin-array UV Pre-Ionized CO2 Laser, Proc. SPIE, 6263, 26309 (2006).

Keywords


1. J. Witteman, The CO2 Laser, Springer Series in Optical Science, 53, (1987).
 
2. Ed. By M. Endo, et al., Gas Lasers, Taylor and Francis Group, USA, (2007).
 
3. D.J. Biswas, et al., Multiline CO2 Lasers and Their Uses, Prog. Quant. Electr., 14, 1-61 (1990).
 
4. D.J. Biswas, J.P. Nilaya, Repetitive Transversely Excited Gas Laser Pulsers, Prog. Quant. Electr., 26, 1-63 (2002).
 
5. I. Kitazima, Effects of Foreign Gases on the Pulsed Operation of a CO2 Laser, J. Appl. Phys., 45, 2997 (1974).
 
6. M.V. Ivashchenkov, et al., Short Pulse Formation in a TEA CO2 Laser Using CO2-N2-H2 Gas Mixture, Quant. Electron., 31, 965 (2001).
 
7. M. Zand, et al., A 490 W Transversely Txcited Atmospheric CO2 Spark Gap Laser with Added H2, Laser. Phys., 28, 025002 (2018).
 
8. S. Beheshtipour, et al., The effects of Focusing power on TEA CO2 Laser-Induced Breakdown and the Consequent Pulse Shaping effects, Physics of Plasmas, 25, 023105 (2018).
 
9. L.W. Casperson, Analytic Modeling of Gain-Switched Lasers. I. Laser Oscillators, J. App. Phys., 47, 4555-4562 (1976).
 
10. K. Smith, R.M. Thomson, Computer Modeling of Gas Lasers, Springer Scince+Business Media, New York, (1978).
 
11. A.M. Koushki, et al., Kinetic modeling of a Pulsed CO2 Lasers, Lasers Engineer, 2, 265-280 (2011).
 
12. R. Torabi, et al., Simulation and Initial Experiments of a High Power Pulsed TEA CO2 Lasers, Physica Scripta., 91, 015501 (2015).
 
13. R. Torabi, et al., Theoreticl and Experimental Analysis of the TEA CO2 Laser Dynamics by six Temperature Vibrational–Rotational Model, Optik, 135, 238-243 (2017).
 
14. K. Silakhori, et al., High Repetition rate Pin-array UV Pre-Ionized CO2 Laser, Proc. SPIE, 6263, 26309 (2006).