In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

1 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran - Iran

Abstract

In order to modeling the gas behavior inside the rotor of a gas centrifuge, a powerful tool is needed to overcome the computational constraints of gas inside the centrifuge along with the ability to apply all drives at the all flow regimes. Due to the suitability of the DSMC method for all flow regimes formed inside the centrifuge, in this paper, the DSMC method is used to analyze the separation performance of a centrifuge in axisymmetric coordinates. For this purpose, using a multi-scale CFD-MD method, first the momentum accommodation coefficients required to use the Cercignani-Lampis-Lord boundary condition are extracted and then, based on that, the behavior of the gas inside a centrifuge machine is investigated using the DSMC method and the amount of separation power is determined. Based on the comparison of the simulation results with the experimental test results, it was shown that using the proposed hybrid method to determine the amount of momentum accommodation coefficients used in the CLL boundary condition of the DSMC method, can increase the accuracy of determining the amount of separation power of the machine up to 8%.

Highlights

  1. M. Benedict, T.H. Pigford, Nuclear chemical engineering, McGraw-Hill, (1957).

 

  1. H.G. Wood, J.B. Morton, Onsager's pancake approximation for the fluid dynamics of a gas centrifuge, Journal of Fluid Mechanics, 101(1), 1-31 (1980).

 

  1. H.G. Wood, T.C. Mason, Soubbaramayer, Multi-isotope separation in a gas centrifuge using Onsager's pancake model, Separation Science and Technology, 31(9), 1185-1213 (1996).

 

  1. T. Kai, K. Hasegawa, Numerical calculation of flow and isotope separation for SF6 gas centrifuge, Journal of Nuclear Science and Technology, 37(2), 153-165 (2000).

 

  1. P. Omnes, Numerical and physical comparisons of two models of a gas centrifuge, Computers & Fluids, 36(6), 1028-1039 (2007).

 

  1. G.A. Bird, Molecular gas dynamics and the direct simulation of gas flows, Oxford Univ. Press, New York, (1994).

 

  1. S. Pradhan, V. Kumaran, The generalized Onsager model for the secondary flow in a high-speed rotating cylinder, Journal of Fluid Mechanics, 686, 109-159 (2011).

 

  1. S. Yousefi-Nasab, et al, Investigation of the effect of bellows on the separation power in a gas centrifuge using DSMC method, Annals of Nuclear Energy, 169, 108955, (2022).

 

  1. V. Ghazanfari, et al, Investigation of the continuum-rarefied flow and isotope separation using a hybrid CFD-DSMC simulation for UF6 in a gas centrifuge, Annals of Nuclear Energy, 152, 107985 (2021).

 

  1. M. Khajenoori, et al, Modeling gas-granular flow in molecular using the DSMC method and continuum regions by Onsagerʼs pancake equation with mass sources and sinks in a rotating cylinder, Granular Matter, 21(3), 1-15 (2019).

 

  1. C. Cercignani, M. Lampis, Kinetic models for gas-surface interactions, Transport Theory and Statistical Physics, 1(2), 101-114 (1971).

 

  1. R.G. Lord, Some extensions to the Cercignani–Lampis gas–surface scattering kernel, Physics of Fluids A: Fluid Dynamics, 3(4), 706-710 (1991).

 

  1. S. O'Connell, P. Thompson, Molecular dynamics-continuum hybrid computations:a tool for studying complex fluid flows, Phys Rev E, 52(6), 5792-5795, (1995).

 

  1. N.G. Hadjiconstantinou, A.T. Patera, Heterogeneous Atomistic-Continuum Representations for Dense Fluid Systems, Int. J. Mod. Phys. C, 8(4), 967-976 (1997).

 

  1. E. Flekkøy, G. Wagner, J. Feder, Hybrid Model for Combined Particle and Continuum Dynamics, Europhys. Lett, 52(3), 271-279 (2000).

 

  1. R. Delgado-Buscalioni, P. Coveney, Continuum-Particle Hybrid Coupling for Mass, Momentum, and Energy Transfers in Unsteady Fluid Flow, Phys. Rev. E, 67(4), 046704 (2003).

 

  1. X.B. Nie, S.Y. Chen, M.O. Robbins, A Continuum and Molecular Dynamics Hybrid Method for Micro- and Nano-Fluid Flow, J. Fluid Mech, 500, 55-64 (2004).

 

  1. X. Nie, S. Chen, M.O. Robbins, Hybrid Continuum-Atomistic Simulation of Singular Corner Flow, Phys. Fluids, 16(10), 3579-3591 (2004).

 

  1. X. Nie, M.O. Robbins, S. Chen, Resolving Singular Forces in Cavity Flow: Multiscale Modeling From Atomic to Millimeter Scales, Phys. Rev. Lett, 96(13), 134501 (2006).

 

  1. I.A. Cosden, J.R. Lukes, A hybrid atomistic–continuum model for fluid flow using LAMMPS and OpenFOAM, Computer Physics Communications, 184, 1958-1965 (2013).

 

  1. S. Yousefi-Nasab, et al, Molecular dynamics simulations on the scattering of heavy gases on the composite surfaces, Vacuum, 183, 109864 (2021).

 

  1. K.K. Kamara, R. Kumar, Development of empirical relationships for surface accommodation coefficients through investigation of nano-poiseuille flows using molesular dynamicd method, Microfluidics and Nanofluidics, 24(9), 1-14 (2020).

 

  1. L.F.G. Marcantoni, J.P. Tamagno, S.A. Elaskar, High speed flow simulation using openFOAM, Mecanica Computacional, 31(16), 2939-2959 (2012).

 

  1. M.W. Tysanner, A.L. Garcia, Measurement bias of fluid velocity in molecular simulations, Journal of Computational Physics, 196(1), 173-183 (2004).

 

  1. Q. Wang, et al, Coupling strategies investigation of hybrid atomistic-continuum method based on state variable coupling, Advances in Materials Science and Engineering, 2017, 1-21 (2017).

 

  1. Y. Mao, Y. Zhang, C.L. Chen, Atomistic-Continuum Hybrid Simulation of Heat Transfer Between Argon Flow and Copper Plates, Journal of Heat Transfer, 137 (9), 091011 (2015).

 

  1. T.H. Yen, C.Y. Soong, P.Y. Tzeng, Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows, Microfluidics and Nanofluidics, 3(6), 665-675 (2007).

 

  1. Q. Wang, et al, Coupling Strategies Investigation of Hybrid Atomistic-Continuum Method Based on State Variable Coupling, Adv. Master. Sci. Eng, 2017, 1014636 (2017).

 

  1. Y.C. Wang, G.W. He, A Dynamic Coupling Model for Hybrid Atomistic–Continuum Computations, Chem. Eng. Sci, 62 (13), 3574-3579 (2007).

 

  1. H. Wood, T. Mason, Soubbaramayer, Multi-isotope separation in a gas centrifuge using Onsager's pancake model, Separation Science and Technology, 31(9), 1185-1213 (1996).

 

  1. H. Wood, et al, Estimation of overall separation factor of a gas centrifuge for different multicomponent mixtures by separation theory for binary case, Separation Science and Technology, 37(2), 417-430 (2002).

Keywords

  1. M. Benedict, T.H. Pigford, Nuclear chemical engineering, McGraw-Hill, (1957).

 

  1. H.G. Wood, J.B. Morton, Onsager's pancake approximation for the fluid dynamics of a gas centrifuge, Journal of Fluid Mechanics, 101(1), 1-31 (1980).

 

  1. H.G. Wood, T.C. Mason, Soubbaramayer, Multi-isotope separation in a gas centrifuge using Onsager's pancake model, Separation Science and Technology, 31(9), 1185-1213 (1996).

 

  1. T. Kai, K. Hasegawa, Numerical calculation of flow and isotope separation for SF6 gas centrifuge, Journal of Nuclear Science and Technology, 37(2), 153-165 (2000).

 

  1. P. Omnes, Numerical and physical comparisons of two models of a gas centrifuge, Computers & Fluids, 36(6), 1028-1039 (2007).

 

  1. G.A. Bird, Molecular gas dynamics and the direct simulation of gas flows, Oxford Univ. Press, New York, (1994).

 

  1. S. Pradhan, V. Kumaran, The generalized Onsager model for the secondary flow in a high-speed rotating cylinder, Journal of Fluid Mechanics, 686, 109-159 (2011).

 

  1. S. Yousefi-Nasab, et al, Investigation of the effect of bellows on the separation power in a gas centrifuge using DSMC method, Annals of Nuclear Energy, 169, 108955, (2022).

 

  1. V. Ghazanfari, et al, Investigation of the continuum-rarefied flow and isotope separation using a hybrid CFD-DSMC simulation for UF6 in a gas centrifuge, Annals of Nuclear Energy, 152, 107985 (2021).

 

  1. M. Khajenoori, et al, Modeling gas-granular flow in molecular using the DSMC method and continuum regions by Onsagerʼs pancake equation with mass sources and sinks in a rotating cylinder, Granular Matter, 21(3), 1-15 (2019).

 

  1. C. Cercignani, M. Lampis, Kinetic models for gas-surface interactions, Transport Theory and Statistical Physics, 1(2), 101-114 (1971).

 

  1. R.G. Lord, Some extensions to the Cercignani–Lampis gas–surface scattering kernel, Physics of Fluids A: Fluid Dynamics, 3(4), 706-710 (1991).

 

  1. S. O'Connell, P. Thompson, Molecular dynamics-continuum hybrid computations:a tool for studying complex fluid flows, Phys Rev E, 52(6), 5792-5795, (1995).

 

  1. N.G. Hadjiconstantinou, A.T. Patera, Heterogeneous Atomistic-Continuum Representations for Dense Fluid Systems, Int. J. Mod. Phys. C, 8(4), 967-976 (1997).

 

  1. E. Flekkøy, G. Wagner, J. Feder, Hybrid Model for Combined Particle and Continuum Dynamics, Europhys. Lett, 52(3), 271-279 (2000).

 

  1. R. Delgado-Buscalioni, P. Coveney, Continuum-Particle Hybrid Coupling for Mass, Momentum, and Energy Transfers in Unsteady Fluid Flow, Phys. Rev. E, 67(4), 046704 (2003).

 

  1. X.B. Nie, S.Y. Chen, M.O. Robbins, A Continuum and Molecular Dynamics Hybrid Method for Micro- and Nano-Fluid Flow, J. Fluid Mech, 500, 55-64 (2004).

 

  1. X. Nie, S. Chen, M.O. Robbins, Hybrid Continuum-Atomistic Simulation of Singular Corner Flow, Phys. Fluids, 16(10), 3579-3591 (2004).

 

  1. X. Nie, M.O. Robbins, S. Chen, Resolving Singular Forces in Cavity Flow: Multiscale Modeling From Atomic to Millimeter Scales, Phys. Rev. Lett, 96(13), 134501 (2006).

 

  1. I.A. Cosden, J.R. Lukes, A hybrid atomistic–continuum model for fluid flow using LAMMPS and OpenFOAM, Computer Physics Communications, 184, 1958-1965 (2013).

 

  1. S. Yousefi-Nasab, et al, Molecular dynamics simulations on the scattering of heavy gases on the composite surfaces, Vacuum, 183, 109864 (2021).

 

  1. K.K. Kamara, R. Kumar, Development of empirical relationships for surface accommodation coefficients through investigation of nano-poiseuille flows using molesular dynamicd method, Microfluidics and Nanofluidics, 24(9), 1-14 (2020).

 

  1. L.F.G. Marcantoni, J.P. Tamagno, S.A. Elaskar, High speed flow simulation using openFOAM, Mecanica Computacional, 31(16), 2939-2959 (2012).

 

  1. M.W. Tysanner, A.L. Garcia, Measurement bias of fluid velocity in molecular simulations, Journal of Computational Physics, 196(1), 173-183 (2004).

 

  1. Q. Wang, et al, Coupling strategies investigation of hybrid atomistic-continuum method based on state variable coupling, Advances in Materials Science and Engineering, 2017, 1-21 (2017).

 

  1. Y. Mao, Y. Zhang, C.L. Chen, Atomistic-Continuum Hybrid Simulation of Heat Transfer Between Argon Flow and Copper Plates, Journal of Heat Transfer, 137 (9), 091011 (2015).

 

  1. T.H. Yen, C.Y. Soong, P.Y. Tzeng, Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows, Microfluidics and Nanofluidics, 3(6), 665-675 (2007).

 

  1. Q. Wang, et al, Coupling Strategies Investigation of Hybrid Atomistic-Continuum Method Based on State Variable Coupling, Adv. Master. Sci. Eng, 2017, 1014636 (2017).

 

  1. Y.C. Wang, G.W. He, A Dynamic Coupling Model for Hybrid Atomistic–Continuum Computations, Chem. Eng. Sci, 62 (13), 3574-3579 (2007).

 

  1. H. Wood, T. Mason, Soubbaramayer, Multi-isotope separation in a gas centrifuge using Onsager's pancake model, Separation Science and Technology, 31(9), 1185-1213 (1996).

 

  1. H. Wood, et al, Estimation of overall separation factor of a gas centrifuge for different multicomponent mixtures by separation theory for binary case, Separation Science and Technology, 37(2), 417-430 (2002).