[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
[2] T. Durkop, S.A. Getty, E. Cobas, M.S. Fuhrer, Extraordinary Mobility in Semiconducting Carbon Nanotubes, Nano letters 4 (2004) 35-39.
[3] Z. Yao, C. Kane, C. Dekker, High-Field Electrical Transport in Single-Wall Carbon Nanotubes, Phys. Rev. Lett. 84 (2000) 2941-2944.
[4] P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite, Science 265 (1994) 1212-1214.
[5] O. Korostynska, K. Arshak, D. Morris, A. Arshak, E. Jafer, Radiation-induced changes in the electrical properties of carbon filled PVDF thick films, Mater. Sci. Eng. B 141 (2007) 115-120.
[6] J. Ma, J. Yeow, Effect of percolation on electrical conductivity in a carbon nanotube-based film radiation sensor, Proc. IEEE conf. on Nanotechnology (2008) 259-262.
[7] E.V. Barrera, R. Wilkins, M. Shofner, M.X. Pulikkathara, R. Vaidyanathan, Functionalized Carbon Nanotube-Polymer Composites and Interaction with Radiation, in: H. William Marsh Rice University, TX (Ed.), US (2010).
[8] S. Malekie, F. Ziaie, Effective permittivity simulation of Polyethylene-Carbon Nanotube Nano-Composite using Finite Element Method, Annual Physics Conference of Iran, University of Sistan and Baluchestan, Zahedan (2014) 407-410.
[9] P. Owen, Modelling a Calorimeter for High Dose Rate Brachytherapy, Department of Physics, University of Surrey (2011) 76.
[11] S. Malekie, F. Ziaie, A two-dimensional simulation to predict the electrical behavior of carbon nanotube/polymer composites, J. Polym. Eng. 37(2) (2016) 205-210.
[12] I. Balberg, C.H. Anderson, S. Alexander, N. Wagner, Excluded volume and its relation to the onset of percolation, Phys. Rev. B, 30 (1984) 3933-3943.
[13] A. Belashi, A Dissertation entitled Percolation Modeling in Polymer Nanocomposites (2011).
[14] K. Jeon, L. Lumata, T. Tokumoto, E. Steven, J. Brooks, R.G. Alamo, Low electrical conductivity threshold and crystalline morphology of single-walled carbon nanotubes-high density polyethylene nanocomposites characterized by SEM, Raman spectroscopy and AFM, Polymer 48 (2007) 4751-4764.
[15] S. Malekie, F. Ziaie, Study on a novel dosimeter based on polyethylene–carbon nanotube composite, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 791 (2015) 1-5.
[16] W.D. Callister, Fundamentals of Materials Science and Engineering, fifth ed., John Wiley & Sons, Inc., The University of Utah (2001).
[17] S. Luo, Processing-Structure-Property Relationships Of Carbon Nanotube And Nanoplatelet Enabled Piezoresistive Sensors, The Florida State University, Electronic Theses, Treatises and Dissertations (2013) Paper 7478.
[18] I. Tavman, Y. Aydogdu, M. Kök, A. Turgut, A.E. a, Measurement of heat capacity and thermal conductivity of HDPE/expanded graphite nanocomposites by differential scanning calorimetry, Archives of Materials Science and Engineering 50 (2011) 5.
[19] N. Apsley, H.P. Hughes, Temperature- and field-dependence of hopping conduction in disordered systems, Philos. Mag. 3 (1974) 963.
[20] V. Skákalová, U. Dettlaff-Weglikowska, S. Roth, Electrical and mechanical properties of nanocomposites of single wall carbon nanotubes with PMMA, Synthetic Met. 152 (2005) 349-352.
[21] J.M. Benoit, B. Corraze, S. Lefrant, W.J. Blau, P. Bernier, O. Chauvet, Transport properties of PMMA-Carbon Nanotubes composites, Synthetic Met. 121 (2001) 1215-1216.
[22] F. Du, J.E. Fischer, K.I. Winey, Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites, Phys. Rev. B, 72 (2005) 121404.
[23] F. Du, R.C. Scogna, W. Zhou, S. Brand, J.E. Fischer, K.I. Winey, Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity, Macromolecules 37 (2004) 9048-9055.
[24] J. Dai, Q. Wang, W. Li, Z. Wei, G. Xu, Properties of well aligned SWNT modified poly (methyl methacrylate) nanocomposites, Mater. Lett. 61 (2007) 27-29.
[25] O. Regev, P.N.B. ElKati, J. Loos, C.E. Koning, Preparation of Conductive Nanotube–Polymer Composites Using Latex Technology,