In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran - Iran

Abstract

In this work, an argon microwave plasma with a frequency of 2.45 GHz at low pressure is experimentally demonstrated. Then, the characteristics of the formed plasma (temperature and density of electrons) in the presence and without the presence of a magnetic field are calculated and compared by optical emission spectroscopy. Permanent magnets are used to confine the plasma and supply the magnetic field in the electron cyclotron resonance mechanism. With the help of simulation, the proper arrangement of the magnets to produce the desired magnetic field is obtained. Then, using the relevant physical models, the temperature and density of the electrons are calculated. The results show that the magnetic field has a significant effect on the plasma characteristics and causes about 125% increase in temperature and 200% increase in electron density. It is also shown that, as expected, as the pressure decreases, the temperature of the electrons increases and their density decreases. This confirms the accuracy of the experiment and the obtained results

Highlights

  1. Lieberman, Michael A., and Alan J. Lichtenberg, Principles of plasma discharges and materials processing, John Wiley & Sons, (2005).

 

  1. Moisan, Michel, and Jacques Pelletier, eds., Microwave excited plasmas, Elsevier, (1992).

 

  1. Yang, Juan, Yingqiao Xu, Zhiqiang Meng, and Tielian Yang, Effect of applied magnetic field on a microwave plasma thruster, Physics of Plasmas, 15(2), 023503 (2008).

 

  1. R.L. Stenzel, et al, Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics, Physics of Plasmas, 20(8), 083504 (2013).

 

  1. T.D. Mantei, S. Dhole, Characterization of a permanent magnet electron cyclotron resonance plasma source, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 9(1), 26-28 (1991).

 

  1. Chen, Longwei, et al, On the generation of magnetic field enhanced microwave plasma line, Physics of Plasmas, 23(12), 123509 (2016).

 

  1. Yang Juan, et al, Effect of applied magnetic field on a microwave plasma thruster, Physics of Plasmas, 15(2), 023503 (2008).

 

  1. G. Neumann, K‐H. Kretschmer, Characterization of a new electron cyclotron resonance source working with permanent magnets, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 9(2), 334-338 (1991).

 

  1. Wang Lin, et al, Transient analysis of light brightness emitted from high power microwave nitrogen breakdown under external dc magnetic field, Physics of Plasmas, 27(12), 123510 (2020).

 

  1. Morishita Takato, et al, Effect of nozzle magnetic field on microwave discharge cathode performance, Acta Astronautica, 165, 25-31 (2019).

 

  1. N. Bibinov, H. Halfmann, P. Awakowicz, Determination of the electron energy distribution function via optical emission spectroscopy and a Langmuir probe in an ICP, Plasma Sources Science Technology, 17(3), 035004. 15, ( 2008).

 

  1. R. McWhirter, Plasma Diagnostic Techniques, Academic Press, 7256. 046.

 

  1. A. Qayyum, et al, Optical actinometry of the N-atom density in nitrogen plasma, Plasma Devices and Operations, 15(2), 87-93 (2007).

 

  1. Fujimoto Takashi, Kinetics of ionization-recombination of a plasma and population density of excited ions. II. Ionizing plasma, Journal of the Physical Society of Japan, 47(1), 273-281 (1979).

 

  1. Niu Tian-Ye, et al, A comparison among optical emission spectroscopic methods of determining electron temperature in low pressure argon plasmas, Chinese Physics, 16(9), 2757 (2007).

 

  1. J. Vlˇcek, A collisional–radiative model applicable to argon discharges over a wide range of conditions: I. Formulation and basic data, J. Phys. D: Appl. Phys, 22, 623 (1989).

 

  1. J.B. Boffard, C.C. Lin, C.A. DeJoseph, Application of excitation cross sections to optical plasma diagnostics, J. Phys. D: Appl. Phys., 37, R143–61 (2004).

 

  1. Xi-Ming Zhu, and Yi-Kang Pu, Optical emission spectroscopy in low-temperature plasmas containing argon and nitrogen: determination of the electron temperature and density by the line-ratio method, Journal of Physics D: Applied Physics, 43(40), 403001 (2010).

 

  1. Xi-Ming Zhu, et al, Electron density and ion energy dependence on driving frequency in capacitively coupled argon plasmas, Journal of Physics D: Applied Physics, 40(22), 7019 (2007).

 

  1. M. Nikolić, et al, Measurements of population densities of metastable and resonant levels of argon using laser induced fluorescence, Journal of Applied Physics, 117(2), 023304 (2015).

 

  1. Xi-Ming Zhu, et al, Determination of state-to-state electron-impact rate coefficients between Ar excited states: a review of combined diagnostic experiments in afterglow plasmas, Plasma Sources Science and Technology, 25(4), 043003 (2016).

 

  1. K. Katsonis, et al, Argon 4s and 4p excited states atomic data applied in ARC-JET modeling, International Journal of Aerospace Engineering, 2011 (2011).

 

  1. John B. Boffard, et al, Electron-impact excitation of argon: Optical emission cross sections in the range of 300–2500 nm, Atomic Data and Nuclear Data Tables, 93(6), 831-863 (2007).

 

  1. S. Wu, et al, Effect of Pulse Rising Time of Pulse dc Voltage on Atmospheric Pressure Non‐Equilibrium Plasma, Plasma Processes and Polymers, 10(2), 136-140 (2013).

 

  1. D.L. Adams, W. Whaling, Argon branching ratios for spectral-intensity calibration, JOSA, 71(8), 1036-1038 (1981).

 

  1. Danzmann Karsten, and Manfred Kock, Argon branching ratios for spectral intensity calibration: a reply, JOSA, 72(11), 1556-1557 (1982).

 

  1. C.H. Corliss, J.B. Shumaker Jr., Transition probabilities in argon I, Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry, 71(6), 575 (1967).

 

  1. J. Ethan Chilton, et al, Measurement of electron-impact excitation into the 3 p 5 4 p levels of argon using Fourier-transform spectroscopy, Physical Review A, 57(1), 267 (1998).

 

  1. John B. Boffard, et al, Measurement of electron-impact excitation cross sections out of metastable levels of argon and comparison with ground-state excitation, Physical Review A, 59(4), 2749 (1999).

 

  1. Tobin Weber, John B. Boffard, Chun C. Lin, Electron-impact excitation cross sections of the higher argon 3 p 5 np (n= 5, 6, 7) levels, Physical Review A, 68(3), 032719 (2003).

Keywords

  1. Lieberman, Michael A., and Alan J. Lichtenberg, Principles of plasma discharges and materials processing, John Wiley & Sons, (2005).

 

  1. Moisan, Michel, and Jacques Pelletier, eds., Microwave excited plasmas, Elsevier, (1992).

 

  1. Yang, Juan, Yingqiao Xu, Zhiqiang Meng, and Tielian Yang, Effect of applied magnetic field on a microwave plasma thruster, Physics of Plasmas, 15(2), 023503 (2008).

 

  1. R.L. Stenzel, et al, Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics, Physics of Plasmas, 20(8), 083504 (2013).

 

  1. T.D. Mantei, S. Dhole, Characterization of a permanent magnet electron cyclotron resonance plasma source, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 9(1), 26-28 (1991).

 

  1. Chen, Longwei, et al, On the generation of magnetic field enhanced microwave plasma line, Physics of Plasmas, 23(12), 123509 (2016).

 

  1. Yang Juan, et al, Effect of applied magnetic field on a microwave plasma thruster, Physics of Plasmas, 15(2), 023503 (2008).

 

  1. G. Neumann, K‐H. Kretschmer, Characterization of a new electron cyclotron resonance source working with permanent magnets, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 9(2), 334-338 (1991).

 

  1. Wang Lin, et al, Transient analysis of light brightness emitted from high power microwave nitrogen breakdown under external dc magnetic field, Physics of Plasmas, 27(12), 123510 (2020).

 

  1. Morishita Takato, et al, Effect of nozzle magnetic field on microwave discharge cathode performance, Acta Astronautica, 165, 25-31 (2019).

 

  1. N. Bibinov, H. Halfmann, P. Awakowicz, Determination of the electron energy distribution function via optical emission spectroscopy and a Langmuir probe in an ICP, Plasma Sources Science Technology, 17(3), 035004. 15, ( 2008).

 

  1. R. McWhirter, Plasma Diagnostic Techniques, Academic Press, 7256. 046.

 

  1. A. Qayyum, et al, Optical actinometry of the N-atom density in nitrogen plasma, Plasma Devices and Operations, 15(2), 87-93 (2007).

 

  1. Fujimoto Takashi, Kinetics of ionization-recombination of a plasma and population density of excited ions. II. Ionizing plasma, Journal of the Physical Society of Japan, 47(1), 273-281 (1979).

 

  1. Niu Tian-Ye, et al, A comparison among optical emission spectroscopic methods of determining electron temperature in low pressure argon plasmas, Chinese Physics, 16(9), 2757 (2007).

 

  1. J. Vlˇcek, A collisional–radiative model applicable to argon discharges over a wide range of conditions: I. Formulation and basic data, J. Phys. D: Appl. Phys, 22, 623 (1989).

 

  1. J.B. Boffard, C.C. Lin, C.A. DeJoseph, Application of excitation cross sections to optical plasma diagnostics, J. Phys. D: Appl. Phys., 37, R143–61 (2004).

 

  1. Xi-Ming Zhu, and Yi-Kang Pu, Optical emission spectroscopy in low-temperature plasmas containing argon and nitrogen: determination of the electron temperature and density by the line-ratio method, Journal of Physics D: Applied Physics, 43(40), 403001 (2010).

 

  1. Xi-Ming Zhu, et al, Electron density and ion energy dependence on driving frequency in capacitively coupled argon plasmas, Journal of Physics D: Applied Physics, 40(22), 7019 (2007).

 

  1. M. Nikolić, et al, Measurements of population densities of metastable and resonant levels of argon using laser induced fluorescence, Journal of Applied Physics, 117(2), 023304 (2015).

 

  1. Xi-Ming Zhu, et al, Determination of state-to-state electron-impact rate coefficients between Ar excited states: a review of combined diagnostic experiments in afterglow plasmas, Plasma Sources Science and Technology, 25(4), 043003 (2016).

 

  1. K. Katsonis, et al, Argon 4s and 4p excited states atomic data applied in ARC-JET modeling, International Journal of Aerospace Engineering, 2011 (2011).

 

  1. John B. Boffard, et al, Electron-impact excitation of argon: Optical emission cross sections in the range of 300–2500 nm, Atomic Data and Nuclear Data Tables, 93(6), 831-863 (2007).

 

  1. S. Wu, et al, Effect of Pulse Rising Time of Pulse dc Voltage on Atmospheric Pressure Non‐Equilibrium Plasma, Plasma Processes and Polymers, 10(2), 136-140 (2013).

 

  1. D.L. Adams, W. Whaling, Argon branching ratios for spectral-intensity calibration, JOSA, 71(8), 1036-1038 (1981).

 

  1. Danzmann Karsten, and Manfred Kock, Argon branching ratios for spectral intensity calibration: a reply, JOSA, 72(11), 1556-1557 (1982).

 

  1. C.H. Corliss, J.B. Shumaker Jr., Transition probabilities in argon I, Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry, 71(6), 575 (1967).

 

  1. J. Ethan Chilton, et al, Measurement of electron-impact excitation into the 3 p 5 4 p levels of argon using Fourier-transform spectroscopy, Physical Review A, 57(1), 267 (1998).

 

  1. John B. Boffard, et al, Measurement of electron-impact excitation cross sections out of metastable levels of argon and comparison with ground-state excitation, Physical Review A, 59(4), 2749 (1999).

 

  1. Tobin Weber, John B. Boffard, Chun C. Lin, Electron-impact excitation cross sections of the higher argon 3 p 5 np (n= 5, 6, 7) levels, Physical Review A, 68(3), 032719 (2003).