In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

1 Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 14395-836, Tehran - Iran

2 Department of Nanoelectronics, Research Institute of Science and Nanotechnology, Kashan University, P.O.Box: 8731753153, Kashan - Iran

Abstract

In this paper, copper-gold and copper-silver bimetallic surface nanospheres were formed using ArF excimer laser irradiation with a wavelength of 193 nm and a duration of 15 ns on thin film samples consisting of two metal layers deposited on BK7 glass. The density and shape of the structures were obtained under different irradiation conditions. The optical properties, morphology, and stability of optimal copper-gold and copper-silver structures were compared. The results show that high-density copper-gold core-shell nanospheres with high optical response and stability are produced at a fluence of 150 mJ/cm2 and 5 laser pulses. Silver-copper nanostructures showed lower density, weaker optical response, and lower stability than other nanostructures. The obtained copper-gold nanostructures are suitable for use in plasmonic applications such as biosensors and surface-enhanced Raman spectroscopy.

Highlights

  1. M.A. García, Surface plasmons in metallic nanoparticles: fundamentals and applications, Journal of Physics D: Applied Physics, 44, 283001 (2011).

 

  1. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nature Photonics, 4, 83-91 (2010).

 

  1. M. Fukuda, et al, Feasibility of Plasmonic Circuits in Nanophotonics, IEEE Access, 8, 142495-142506 (2020).

 

  1. J. Mejía-Salazar, O.N. Oliveira Jr, Plasmonic biosensing: Focus review, Chemical Reviews, 118, 10617-10625 (2018).

 

  1. E. Le Ru, P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects, Elsevier (2008).

 

  1. X. Huang, et al, Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy, DOI (2007).

 

  1. W. Srituravanich, et al, Plasmonic nanolithography, Nano Letters, 4, 1085-1088 (2004).

 

  1. R. Vogelgesang, et al, Plasmonic nanostructures in aperture‐less scanning near‐field optical microscopy (aSNOM), Physica Status Solidi (b), 245, 2255-2260 (2008).

 

  1. I.J. McCrindle, et al, Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters, Optics Express, 21, 19142-19152 (2013).

 

  1. R.F. Oulton, et al, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nature Photonics, 2, 496 (2008).

 

  1. Y.-J. Lu, et al, Plasmonic nanolaser using epitaxially grown silver film, Science, 337, 450-453 (2012).

 

  1. N. Jiang, X. Zhuo, J. Wang, Active plasmonics: Principles, structures, and applications, Chemical Reviews, 118, 3054-3099 (2017).

 

  1. S. Kim, et al, Nonnoble‐Metal‐Based Plasmonic Nanomaterials: Recent Advances and Future Perspectives, Advanced Materials, 30, 1704528 (2018).

 

  1. F. Ruffino, M.G. Grimaldi, Nanostructuration of thin metal films by pulsed laser irradiations: A review, Nanomaterials, 9, 1133 (2019).

 

  1. S. Zhang, et al, Non-noble metal copper nanoparticles-decorated TiO2 nanotube arrays with plasmon-enhanced photocatalytic hydrogen evolution under visible light, International Journal of Hydrogen Energy, 40, 303-310 (2015).

 

  1. G. Barbillon, Latest novelties on plasmonic and non-plasmonic nanomaterials for SERS sensing, Nanomaterials, 10, 1200 (2020).

 

  1. S.-G. Park, et al, 3D-assembled Ag nanowires for use in plasmon-enhanced spectroscopic sensors, Applied Spectroscopy Reviews, 54, 325-347 (2019).

 

  1. G. Qiu, S.P. Ng, C.-M.L. Wu, Bimetallic Au-Ag alloy nanoislands for highly sensitive localized surface plasmon resonance biosensing, Sensors and Actuators B: Chemical, 265, 459-467 (2018).

 

  1. G. Schider, et al, Plasmon dispersion relation of Au and Ag nanowires, Physical Review B, 68, 155427 (2003).

 

  1. S. Zeng, et al, Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement, Sensors and Actuators B: Chemical, 176, 1128-1133 (2013).

 

  1. C. Lin, et al, Plasmon-induced broad spectrum photocatalytic overall water splitting: Through non-noble bimetal nanoparticles hybrid with reduced graphene oxide, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 646, 128962 (2022).

 

  1. U. Guler, et al, Colloidal plasmonic titanium nitride nanoparticles: properties and applications, Nanophotonics, 4, 269-276 (2015).

 

  1. S.K. Ghosh, et al, Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids, The Journal of Physical Chemistry B, 108, 13963-13971 (2004).

 

  1. I. Pastoriza‐Santos, et al, Aerobic synthesis of Cu nanoplates with intense plasmon resonances, Small, 5, 440-443 (2009).

 

  1. S. Linic, et al, Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties, Accounts of Chemical Research, 46, 1890-1899 (2013).

Keywords

  1. M.A. García, Surface plasmons in metallic nanoparticles: fundamentals and applications, Journal of Physics D: Applied Physics, 44, 283001 (2011).

 

  1. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nature Photonics, 4, 83-91 (2010).

 

  1. M. Fukuda, et al, Feasibility of Plasmonic Circuits in Nanophotonics, IEEE Access, 8, 142495-142506 (2020).

 

  1. J. Mejía-Salazar, O.N. Oliveira Jr, Plasmonic biosensing: Focus review, Chemical Reviews, 118, 10617-10625 (2018).

 

  1. E. Le Ru, P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects, Elsevier (2008).

 

  1. X. Huang, et al, Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy, DOI (2007).

 

  1. W. Srituravanich, et al, Plasmonic nanolithography, Nano Letters, 4, 1085-1088 (2004).

 

  1. R. Vogelgesang, et al, Plasmonic nanostructures in aperture‐less scanning near‐field optical microscopy (aSNOM), Physica Status Solidi (b), 245, 2255-2260 (2008).

 

  1. I.J. McCrindle, et al, Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters, Optics Express, 21, 19142-19152 (2013).

 

  1. R.F. Oulton, et al, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nature Photonics, 2, 496 (2008).

 

  1. Y.-J. Lu, et al, Plasmonic nanolaser using epitaxially grown silver film, Science, 337, 450-453 (2012).

 

  1. N. Jiang, X. Zhuo, J. Wang, Active plasmonics: Principles, structures, and applications, Chemical Reviews, 118, 3054-3099 (2017).

 

  1. S. Kim, et al, Nonnoble‐Metal‐Based Plasmonic Nanomaterials: Recent Advances and Future Perspectives, Advanced Materials, 30, 1704528 (2018).

 

  1. F. Ruffino, M.G. Grimaldi, Nanostructuration of thin metal films by pulsed laser irradiations: A review, Nanomaterials, 9, 1133 (2019).

 

  1. S. Zhang, et al, Non-noble metal copper nanoparticles-decorated TiO2 nanotube arrays with plasmon-enhanced photocatalytic hydrogen evolution under visible light, International Journal of Hydrogen Energy, 40, 303-310 (2015).

 

  1. G. Barbillon, Latest novelties on plasmonic and non-plasmonic nanomaterials for SERS sensing, Nanomaterials, 10, 1200 (2020).

 

  1. S.-G. Park, et al, 3D-assembled Ag nanowires for use in plasmon-enhanced spectroscopic sensors, Applied Spectroscopy Reviews, 54, 325-347 (2019).

 

  1. G. Qiu, S.P. Ng, C.-M.L. Wu, Bimetallic Au-Ag alloy nanoislands for highly sensitive localized surface plasmon resonance biosensing, Sensors and Actuators B: Chemical, 265, 459-467 (2018).

 

  1. G. Schider, et al, Plasmon dispersion relation of Au and Ag nanowires, Physical Review B, 68, 155427 (2003).

 

  1. S. Zeng, et al, Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement, Sensors and Actuators B: Chemical, 176, 1128-1133 (2013).

 

  1. C. Lin, et al, Plasmon-induced broad spectrum photocatalytic overall water splitting: Through non-noble bimetal nanoparticles hybrid with reduced graphene oxide, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 646, 128962 (2022).

 

  1. U. Guler, et al, Colloidal plasmonic titanium nitride nanoparticles: properties and applications, Nanophotonics, 4, 269-276 (2015).

 

  1. S.K. Ghosh, et al, Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids, The Journal of Physical Chemistry B, 108, 13963-13971 (2004).

 

  1. I. Pastoriza‐Santos, et al, Aerobic synthesis of Cu nanoplates with intense plasmon resonances, Small, 5, 440-443 (2009).

 

  1. S. Linic, et al, Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties, Accounts of Chemical Research, 46, 1890-1899 (2013).