[1] Application of Membrane Technologies for Liquid Radioactive Waste Processing, IAEA, Vienna, (2004) 145.
[2] A. Bassil, Industrial Extraction of Uranium Using Ammonium Carbonate and Membrane Separation, United States Patent, Andrew Bassil, (2014).
[3] H.M.A. Rossiter, M.C. Graham, A.I. Schäfer, Impact of speciation on behaviour of uranium in a solar powered membrane system for treatment of brackish groundwater, Sep. Purif. Technol. 71 (2010) 89–96.
[4] L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: Water sources, technology, and today’s challenges, Water Res. 43 (2009) 2317-2348.
[5] B. Van der Bruggena, M. Manttari, M. Nystrom, Drawbacks of applying nanofiltration and how to avoid them: A review, Sep. Purif. Technol. 63 (2008) 251-263.
[6] F. Chang, W. Liu, X. Wang, Comparison of polyamide nanofiltration and low-pressure reverse osmosis membranes on As(III) rejection under various operational conditions, Desalination 334 (2014) 10–16
[7] C.V. Gherasim, P. Mikulášek, Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration, Desalination 343 (2014) 67-74.
[8] A.P. Kryvoruchko, L.Y. Yurlova, I.D. Atamanenko, B.Y. Kornilovich, Ultrafiltration removal of U(VI) from contaminated water, Desalination 162 (2004) 229-236.
[9] A. Favre-Reguillon, G. Lebuzit, D. Murat, J. Foos, C. Mansour, M. Draye, Selective removal of dissolved uranium in drinking water by nanofiltration, Water Res. 42 (2008) 1160-1166.
[10] A. Favre-Reguillon, G. Lebuzit, J. Foos, A. Guy, A. Sorin, M. Lemaire, M. Draye, Selective Rejection of Dissolved Uranium Carbonate from Seawater Using Cross-Flow Filtration Technology, Sep. Sci. Technol. 40 (2005) 623-631.
[11] O. Raff, R.D. Wilken, Removal of dissolved uranium by nanofiltration, Desalination 122 (1999) 147-150.
[12] A.P. Kryvoruchko, I.D. Atamanenko, The effect of dispersed materials on baromembrane treatment of uranium-containing waters, Desalination 204 (2007) 307–315.
[13] J.D. Seader, E.J. Henley, D.K. Roper, Separation Process Principles: Chemical and Biochemical Operations, John Wiley & Sons, Inc., United States of America, (2011) 821.
[14] Treatment of liquid effluent from uranium mines and mills, IAEA, (2004) 27-44.
[15] G. Artug, Modelling and Simulation of Nanoļ¬ltration Membranes, Cuvillier Verlag, Göttingen, (2007) 248.
[16] S.K. Misra, A.K. Mahatele, S.C. Tripathi, A. Dakshinamoorthy, Studies on the simultaneous removal of dissolved DBP and TBP as well as uranyl ions from aqueous solutions by using Micellar-Enhanced Ultrafiltration Technique, Hydrometallurgy 96 (2009) 47–51.
[17] S. Liu, Z. Li, C. Wang, A. Jiao, Enhancing both removal efficiency and permeate flux by potassium sodium tartrate (PST) in a nanofiltration process for the treatment of wastewater containing cadmium and zinc, Sep. Purif. Technol. 116 (2013) 131–136.
[18] F. Bi, H. Zhao, L. Zhang, Q. Ye, H. Chen, C. Gao, Discussion on calculation of maximum water recovery in nanofiltration system, Desalination 332 (2014) 142–146.
[19] E.A. Tsapiuk, Calculation of the product composition and the retention coefficient by pressure driven membrane separation of solutions containing one and two solutes, J. Membr. Sci. 124 (1997) 107-117.