In cooperation with the Iranian Nuclear Society

Calculation of the effective potential of hot dense plasma particles by dielectric response function method based on Hulthen potential

Document Type : Research Paper

Authors

Department of Nuclear Physics, University of Mazandaran, P.O.Box: 47415-416, Balolsar – Iran

Abstract
Introducing the effective potential between plasma particles is one of the common methods to study the behavior of particles in plasma. In this paper, it has been tried to define the effective potential for fully ionized hot dense plasma by using the dielectric response function method. In the dielectric response function method, it is first necessary to introduce an initial potential function, and an effective potential function is obtained with the help of its effect on plasma. The initial potential function used in this paper is the Hulthen potential function, which is used for the first time in these calculations. In the following, the effective potential on the interaction of plasma particles such as electron-ion, electron-electron and ion-ion interaction are compared with other results obtained from other theoretical studies for the same conditions of plasma parameters. The results show that this effective potential includes both the effects of hot dense plasma, i.e. collective effects at long distances and quantum effects at short distances, and represents a very good description of the behavior of particles in hot dense plasma media.

Highlights

1. W. Ebeling, W.D. Kraeft, D. Kremp, Theory of Bound States and Ionization Equilibrium, Akademie-Verlag, Berlin, (1976).

 

2. W.D. Kraeft, et al, Quantum Statistics of Charged Particle Systems, Akademie-Verlag, Berlin, (1986).
 
3. V.S. Filinov, et al, Phase Transition in Strongly Degenerate Hydrogen Plasma, Jetp Letters, 74(7), (2001).
 
4. Young-Dae Jung, Dynamic plasma screening effects on semiclassical inelastic electron–ion collisions in dense plasmas, Physics of Plasmas (1994-present) 4, 21 (1997).
 
5. B. Militzer, D.M. Ceperley, Path integral Monte-Carlo calculations of the deuterium hugoniout, Phys. Rev. Lett., 85, 1890 (2000).
 
6. A.S. Larkin, V.S. Filinov, V.E. Fortov, Path Integral Representation of the Wigner Function in Canonical Ensemble, Contrib. Plasma Phys., 56(3-4), 187–196 (2016).
 
7. W.R. Magro, et al, Molecular Dissociation in Hot Dense Hydrogen, Phys. Rev. Lett., 76(8), (1995).
 
8. Nestor R. Arista, Werner Brandt, Dielectric response of quantum plasmas in thermal equilibrium, Phys. Rev., A 29, 3 (1984).
 
9. T.S. Ramazanov, K.N. Dzhumagulova, Effective screened potentials of strongly coupled semiclassical plasma, Phys. Plasmas, 9, 3758, (2002).

 

10. T.S. Ramazanov, K.N. Dzhumagulova, M.T. Gabdullin, Effective potentials for ion-ion and charge-atom interactions of dense semiclassical plasma, Physics of Plasmas, 17, 042703, (2010).
 
11. T.S. Ramazanov, Zh.A. Moldabekov, M.T. Gabdullin, Effective potentials of interactions and thermodynamic properties of a nonideal two-temperature dense plasma, Physical Review, E 92, 023104 (2015).
 
12. M.K. Bahar, A. Soylu, A. Poszwa, The Hulthén Potential Model for Hydrogen Atoms in Debye Plasma, IEEE Transactions On Plasma Science, (2016).
 
13. J. Sadeghi, Raising and Lowering of Generalized Hulthen Potential from Supersymmetry Approaches, International Journal of Theoretical Physics, 46(3), March (2007).
 
14. Shalom Eliezer, Ajoy Ghatak, Heinrich Hora, Fundamentals of Equations of State; World Scientific Publishing Co. Pte. Ltd, Singapore (2002).
 
15. C. Deutsch, Y. Furutani, M.M. Gombert, Nodal expansions for strongly coupled classical plasmas, Phys. Rep., 69, 85 (1981).

Keywords


1. W. Ebeling, W.D. Kraeft, D. Kremp, Theory of Bound States and Ionization Equilibrium, Akademie-Verlag, Berlin, (1976).
 
2. W.D. Kraeft, et al, Quantum Statistics of Charged Particle Systems, Akademie-Verlag, Berlin, (1986).
 
3. V.S. Filinov, et al, Phase Transition in Strongly Degenerate Hydrogen Plasma, Jetp Letters, 74(7), (2001).
 
4. Young-Dae Jung, Dynamic plasma screening effects on semiclassical inelastic electron–ion collisions in dense plasmas, Physics of Plasmas (1994-present) 4, 21 (1997).
 
5. B. Militzer, D.M. Ceperley, Path integral Monte-Carlo calculations of the deuterium hugoniout, Phys. Rev. Lett., 85, 1890 (2000).
 
6. A.S. Larkin, V.S. Filinov, V.E. Fortov, Path Integral Representation of the Wigner Function in Canonical Ensemble, Contrib. Plasma Phys., 56(3-4), 187–196 (2016).
 
7. W.R. Magro, et al, Molecular Dissociation in Hot Dense Hydrogen, Phys. Rev. Lett., 76(8), (1995).
 
8. Nestor R. Arista, Werner Brandt, Dielectric response of quantum plasmas in thermal equilibrium, Phys. Rev., A 29, 3 (1984).
 
9. T.S. Ramazanov, K.N. Dzhumagulova, Effective screened potentials of strongly coupled semiclassical plasma, Phys. Plasmas, 9, 3758, (2002).
 
10. T.S. Ramazanov, K.N. Dzhumagulova, M.T. Gabdullin, Effective potentials for ion-ion and charge-atom interactions of dense semiclassical plasma, Physics of Plasmas, 17, 042703, (2010).
 
11. T.S. Ramazanov, Zh.A. Moldabekov, M.T. Gabdullin, Effective potentials of interactions and thermodynamic properties of a nonideal two-temperature dense plasma, Physical Review, E 92, 023104 (2015).
 
12. M.K. Bahar, A. Soylu, A. Poszwa, The Hulthén Potential Model for Hydrogen Atoms in Debye Plasma, IEEE Transactions On Plasma Science, (2016).
 
13. J. Sadeghi, Raising and Lowering of Generalized Hulthen Potential from Supersymmetry Approaches, International Journal of Theoretical Physics, 46(3), March (2007).
 
14. Shalom Eliezer, Ajoy Ghatak, Heinrich Hora, Fundamentals of Equations of State; World Scientific Publishing Co. Pte. Ltd, Singapore (2002).
 
15. C. Deutsch, Y. Furutani, M.M. Gombert, Nodal expansions for strongly coupled classical plasmas, Phys. Rep., 69, 85 (1981).