In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

1 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-3486, Tehran - Iran

2 Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box:11365-8486, Tehran-Iran

3 Department of Physical and Computational Chemistry, Shahid Beheshti University, P.O.Box: 1983969411, Tehran - Iran

Abstract

Hydrogen isotope separation can be achieved by confinement to small mesoporous structures or by strong adsorption sites. MOFs are attractive candidates for isotope separation, considering their tunable pore structures and the potential to introduce adsorption sites. In this research, we investigate the formation of elongated dihydrogen complexes near MOF’s open metal sites as a promising reaction for isotope separation. The electronic structure of all MOFs (M is the first-row transition metal) is studied based on density functional theory. The quantum chemical approach suggests Fe-MOF as a promising candidate for isotope separation by modeling the non-covalent interactions with the active site/H2 cluster.

Highlights

  1. P.P. Povinec, et al., Natural radioactivity in Brazilian groundwater, J. Environ. Radioact., 99, 1596-1610 (2008).

 

  1. J. Daillant, Lecture Notes in Physic, 917, 413–444 (2016).

 

  1. S.P.I. Pázsit, Neutron slowing down in a detector with absorption, Nucl. Sci. Eng., 154, 367–373 (2006).

 

  1. P. Kowalczyk, et al, To what extent can mutual shifting of folded carbonaceous walls in slit-like pores affect their adsorption properties, J. Phys. Condens. Matter, 21, 144210-144218 (2009).

 

  1. H.K. Rae, In: Separation of Hydrogen Isotopes, JACS, 68, 1–26 (1978).

 

  1. Hyunchul Oh, Michael Hirscher, Quantum Sieving for Separation of Hydrogen Isotopes Using MOFs Eur, J. Inorg. Chem., 4278–4289 (2016).

 

  1. T.X. Nguyen, H. Jobic, S.K. Bhatia, Microscopic Observation of Kinetic Molecular Sieving of Hydrogen Isotopes in a Nanoporous Material, Phys. Rev. Lett., 105, 085901-085910 (2010).

 

  1. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Elsevier Butterworth–Heinemann, Amsterdam/Heidelbe rg (2005).

 

  1. H.K. Rae, Separation of Hydrogen Isotopes, American Chemical Society, 68, Washington D.C. (1978).

 

  1. X.Z. Chu, et al, Dynamic experiments and model of hydrogen and deuterium separation with micropore molecular sieve Y at 77 K, Chem. Eng. J., 152, 428-433 (2009).

 

  1. J.J.M. Beenakker, V.D. Borman, S.Y. Krylov, Molecular transport in subnanometer pores: zero-point energy, reduced dimensionality and quantum sieving, Chem. Phys. Lett., 232, 379–382 (1995).

 

  1. S. Polarz, B. Smarsly, Nanoporous Materials, Journal of Nanoscience and Nanotechnology, 6, 581-612 (2002).

 

  1. G.Q. Lu, X.S. Zhao, Nanoporous Materials: Science and Engineering, Imperial College Press, London (2004).

 

  1. José M Soler, et al., The SIESTA method for ab initio order-N materials simulation, J. Phys. Condens. Matter, 14, 2745-2779 (2002).

 

  1. Perdew, John P., Kieron Burke, Matthias Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters, 77(18), 3865 (1996).

 

  1. E. Apra, NWChem: Past, present, and future, The Journal of Chemical Physics, 152, 184102 (2020).

 

  1. Banglin Chen, et al., Surface Interactions and Quantum Kinetic Molecular Sieving for H2 and D2 Adsorption on a Mixed Metal−Organic Framework Material, J. Am. Chem. Soc., 130(20), 6411 (2008).

 

  1. G.J. Kubas, et al, , J. Am. Chem. Soc., 106, 451–452 (1984).

 

  1. Natalia V. Belkova, et al, Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides, Chem. Rev., 116(15), 8545–8587 (2016)

Keywords

  1. P.P. Povinec, et al., Natural radioactivity in Brazilian groundwater, J. Environ. Radioact., 99, 1596-1610 (2008).

 

  1. J. Daillant, Lecture Notes in Physic, 917, 413–444 (2016).

 

  1. S.P.I. Pázsit, Neutron slowing down in a detector with absorption, Nucl. Sci. Eng., 154, 367–373 (2006).

 

  1. P. Kowalczyk, et al, To what extent can mutual shifting of folded carbonaceous walls in slit-like pores affect their adsorption properties, J. Phys. Condens. Matter, 21, 144210-144218 (2009).

 

  1. H.K. Rae, In: Separation of Hydrogen Isotopes, JACS, 68, 1–26 (1978).

 

  1. Hyunchul Oh, Michael Hirscher, Quantum Sieving for Separation of Hydrogen Isotopes Using MOFs Eur, J. Inorg. Chem., 4278–4289 (2016).

 

  1. T.X. Nguyen, H. Jobic, S.K. Bhatia, Microscopic Observation of Kinetic Molecular Sieving of Hydrogen Isotopes in a Nanoporous Material, Phys. Rev. Lett., 105, 085901-085910 (2010).

 

  1. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Elsevier Butterworth–Heinemann, Amsterdam/Heidelbe rg (2005).

 

  1. H.K. Rae, Separation of Hydrogen Isotopes, American Chemical Society, 68, Washington D.C. (1978).

 

  1. X.Z. Chu, et al, Dynamic experiments and model of hydrogen and deuterium separation with micropore molecular sieve Y at 77 K, Chem. Eng. J., 152, 428-433 (2009).

 

  1. J.J.M. Beenakker, V.D. Borman, S.Y. Krylov, Molecular transport in subnanometer pores: zero-point energy, reduced dimensionality and quantum sieving, Chem. Phys. Lett., 232, 379–382 (1995).

 

  1. S. Polarz, B. Smarsly, Nanoporous Materials, Journal of Nanoscience and Nanotechnology, 6, 581-612 (2002).

 

  1. G.Q. Lu, X.S. Zhao, Nanoporous Materials: Science and Engineering, Imperial College Press, London (2004).

 

  1. José M Soler, et al., The SIESTA method for ab initio order-N materials simulation, J. Phys. Condens. Matter, 14, 2745-2779 (2002).

 

  1. Perdew, John P., Kieron Burke, Matthias Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters, 77(18), 3865 (1996).

 

  1. E. Apra, NWChem: Past, present, and future, The Journal of Chemical Physics, 152, 184102 (2020).

 

  1. Banglin Chen, et al., Surface Interactions and Quantum Kinetic Molecular Sieving for H2 and D2 Adsorption on a Mixed Metal−Organic Framework Material, J. Am. Chem. Soc., 130(20), 6411 (2008).

 

  1. G.J. Kubas, et al, , J. Am. Chem. Soc., 106, 451–452 (1984).

 

  1. Natalia V. Belkova, et al, Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides, Chem. Rev., 116(15), 8545–8587 (2016)