In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

1 Department of Radiation Application, Faculty of Nuclear Engineering, Shahid Beheshti University, P.O.BOX: 1983969411 Tehran, Iran

2 Department of Nuclear Engineering, Faculty of Energy Engineering, Sharif University of Technology, P.O.BOX: 1458889694 Tehran, Iran

Abstract

Using molecular dynamics simulations, short-term analysis on a time scale of several tens of picoseconds of displacement cascade in radiation-damaged materials was studied. Accordingly, this simulation obtained the equilibrium number of interstitial/vacancy defects and their positions in iron-alpha. Then, the object kinetic Monte Carlo (OKMC) simulations were performed using the obtained results to investigate the effect of annealing on the irradiated alpha-iron. The simulation results showed that in the isochronal annealing of the irradiated alpha-iron, only vacancy cluster defects were more significant than four vacancies, and <111> defects remained stable at temperatures above room temperature.

Keywords

1. G.S. Was, Fundamentals of Radiation Materials Science, Metals and Alloys, Springer (2007).
 
2. S.M. Zamzamian, et al., Atomistic simulation of the effect of carbon content and carbon-rich region on irradiation response of α-Fe on picosecond timescale, Nucl. Instrum. Methods Phys. Res., B 443, 70-78 (2019).
 
3. K.L. Murty, I. Charit, An introduction to nuclear materials: fundamentals and applications, John Wiley & Sons (2013).
 
4. T. Toyama, et al, Effects of neutron flux on irradiation-induced hardening and defects in RPV steels studied by positron annihilation spectroscopy, J. Nucl. Mater., 532, 152041 (2020).
 
5. D.J. Bacon, et al., MD description of damage production in displacement cascades in copper and α-iron, J. Nucl. Mater, 323(2-3), 152-162 (2003).
 
6. ASTME185-10, Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels, ASTM International, West Conshohocken, (2010).
 
7. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phy., 117(1), 1-19 (1995).
 
8. M. Mendelev, et al., Development of new interatomic potentials appropriate for crystalline and liquid iron, Philos. Mag, 83(35), 3977-3994 (2003).
 
9. K. Nordlund, J. Wallenius, L. Malerba, Molecular dynamics simulations of threshold displacement energies in Fe, Nucl. Instrum. Methods Phys. Res., B 246(2), 322-332 (2006).
 
10. C. Björkas, K. Nordlund, M.J. Caturla, Influence of the picosecond defect distribution on damage accumulation in irradiatedα-Fe, Phys. Rev., B 85(2) (2012).
 
11. V. Jansson, L. Malerba, OKMC simulations of Fe–C systems under irradiation: Sensitivity studies, J. Nucl. Mater., 452(1), 118-124 (2014).
 
12. C. Domain, C.S. Becquart, L. Malerba, Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach, J. Nucl. Mater, 335(1), 121-145 (2004).
 
13. M. Norgett, M. Robinson, I. Torrens, A proposed method of calculating displacement dose rates, Nucl. Eng. Des, 33(1), 50-54 (1975).
 
14. S. Miyashiro, S. Fujita, T. Okita, MD simulations to evaluate the influence of applied normal stress or deformation on defect production rate and size distribution of clusters in cascade process for pure Cu, J. Nucl. Mater., 415(1), 1-4 (2011).
 
15. R.E. Stoller, 11 Primary radiation damage formation, Comprehensive Nuclear Materials, 1, (2012).
 
16. A.F. Calder, et al, Computer simulation of cascade damage in α-iron with carbon in solution, J. Nucl. Mater, 382(2-3), 91-95 (2008).
 
17. K. Nakashima, R.E. Stoller, H. Xu, Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe, J. Condens. Matter Phys., 27(33), 335401 (2015).