In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

1 Basic Science Center, Khatam Al Anbia University, P.O. Box: 1781813513, Tehran – Iran

2 Department of Physics, Damghan University, P.O. Box: 36716-41167, Damghan - Iran

Abstract

The conditions of ignition and burn of nuclear fusion fuel in the presence of impurities are one of the critical issues in the fuel pellets design. In this paper, the impurity effect of Au heavy nucleus on all ignition processes in non-equilibrium DT plasma using four temperature models in which the shape of photon energy distribution function effects photon temperature behavior has been investigated. This study investigates the negative effects of fuel impurity during hot spot formation and fuel ignition. The results of numerical calculations obtained from the simulation of all effective processes in ignition show that in the presence of these impurities, effective ion charge and as a result the bremsstrahlung radiation is increased, and eventually the fuel efficiency decreases.

Highlights

  1. R. Betti, O.A. Hurricane, Inertial-confinement fusion with lasers, Nat. Phys., 12, 435 (2016).

 

  1. J.D. Zuegel, et al., Laser Challenges for Fast Ignition, Fusion Sci. Technol., 49, 453 (2006).

 

  1. C.J. Davie, R.G. Evans, Symmetry of Spherically Converging Shock Waves through Reflection, Relating to the Shock Ignition Fusion Energy Scheme, Phys. Rev. Lett., 110, 185002 (2013).

 

  1. H. Hora, et al, High‐gain volume ignition for inertial confinement fusion (ICF), AIP Conference Proceedings, 318, 325 (1994).

 

  1. H. Hora, Extraordinary strong jump of increasing laser fusion gains experienced at volume ignition for combination with NIF experiments, Laser Part. Beams, 31, 229 (2013).

 

  1. A. Caruso, C. Strangio, Ignition thresholds for deuterium-tritium mixtures contaminated by high-Z material in cone-focused fast ignition, J. Exp. Theor. Phys., 97, 948 (2003).

 

  1. D.B. Zou, et al, Tunable proton stopping power of deuterium-tritium by mixing heavy ion dopants for fast ignition, High Energy Density Phys., 18, 1 (2016).

 

  1. S.Yu. Gus’kov, et al, Effect of inactive impurities on the burning of ICF targets, Plasma Phys. Rep., 37, 1020 (2011).

 

  1. M. Najjar, B. Khanbabaei, Effects of carbon impurity on the ignition of deuterium-tritium targets under the relativistic shock waves, Phys. Plasmas, 26, 032709 (2019).

 

  1. S. Atzeni, 2-D Lagrangian studies of symmetry and stability of laser fusion targets, Comp. Phys. Commn, 43, 107 (1986).

 

  1. N.A. Tahir, et al, Method of solution of a three-temperature plasma model and its application to inertial confinement fusion target design studies, J. Appl. Phys, 60, 898 (1986).

 

  1. K. Molvig, et al, Photon coupling theory for plasmas with strong Compton scattering: Four temperature theory, Phys. Plasmas, 16, 023301(2009).

 

  1. R.K. Patria, Statistical Mechanics 2nd Edition Waterloo, Canada, (1996).

 

  1. M. Nazirzadeh, A. Ghasemizad, B. Khanbabaie, Determination of DT critical burn up parameter by four temperature theory, Phys. Plasma, 22, 122709 (2015).

 

  1. Y.B. Zeldovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York, Volume-I (1996).

 

  1. E.N. Avrorin, L.P. Feoktistov, L.I. Shibarshov, Ignition criterion for pulse fusion targets, Sov. J. Plasma Phys, 6, 527 (1980).

 

  1. B. Nayak, S.V.G. Menon, Thermonuclear burn of DT and DD fuels using three-temperature model: Non-equilibrium effects, Laser and Particle Beams, 30, 517 (2012).

 

  1. S. Sarvar, H.K. Na, J.M. Park, Effective ion charge (Zeff) measurements and impurity behavior in KSTAR, Review of Scientific Instrument, 89, 043504 (2018).

Keywords

  1. R. Betti, O.A. Hurricane, Inertial-confinement fusion with lasers, Nat. Phys., 12, 435 (2016).

 

  1. J.D. Zuegel, et al., Laser Challenges for Fast Ignition, Fusion Sci. Technol., 49, 453 (2006).

 

  1. C.J. Davie, R.G. Evans, Symmetry of Spherically Converging Shock Waves through Reflection, Relating to the Shock Ignition Fusion Energy Scheme, Phys. Rev. Lett., 110, 185002 (2013).

 

  1. H. Hora, et al, High‐gain volume ignition for inertial confinement fusion (ICF), AIP Conference Proceedings, 318, 325 (1994).

 

  1. H. Hora, Extraordinary strong jump of increasing laser fusion gains experienced at volume ignition for combination with NIF experiments, Laser Part. Beams, 31, 229 (2013).

 

  1. A. Caruso, C. Strangio, Ignition thresholds for deuterium-tritium mixtures contaminated by high-Z material in cone-focused fast ignition, J. Exp. Theor. Phys., 97, 948 (2003).

 

  1. D.B. Zou, et al, Tunable proton stopping power of deuterium-tritium by mixing heavy ion dopants for fast ignition, High Energy Density Phys., 18, 1 (2016).

 

  1. S.Yu. Gus’kov, et al, Effect of inactive impurities on the burning of ICF targets, Plasma Phys. Rep., 37, 1020 (2011).

 

  1. M. Najjar, B. Khanbabaei, Effects of carbon impurity on the ignition of deuterium-tritium targets under the relativistic shock waves, Phys. Plasmas, 26, 032709 (2019).

 

  1. S. Atzeni, 2-D Lagrangian studies of symmetry and stability of laser fusion targets, Comp. Phys. Commn, 43, 107 (1986).

 

  1. N.A. Tahir, et al, Method of solution of a three-temperature plasma model and its application to inertial confinement fusion target design studies, J. Appl. Phys, 60, 898 (1986).

 

  1. K. Molvig, et al, Photon coupling theory for plasmas with strong Compton scattering: Four temperature theory, Phys. Plasmas, 16, 023301(2009).

 

  1. R.K. Patria, Statistical Mechanics 2nd Edition Waterloo, Canada, (1996).

 

  1. M. Nazirzadeh, A. Ghasemizad, B. Khanbabaie, Determination of DT critical burn up parameter by four temperature theory, Phys. Plasma, 22, 122709 (2015).

 

  1. Y.B. Zeldovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York, Volume-I (1996).

 

  1. E.N. Avrorin, L.P. Feoktistov, L.I. Shibarshov, Ignition criterion for pulse fusion targets, Sov. J. Plasma Phys, 6, 527 (1980).

 

  1. B. Nayak, S.V.G. Menon, Thermonuclear burn of DT and DD fuels using three-temperature model: Non-equilibrium effects, Laser and Particle Beams, 30, 517 (2012).

 

  1. S. Sarvar, H.K. Na, J.M. Park, Effective ion charge (Zeff) measurements and impurity behavior in KSTAR, Review of Scientific Instrument, 89, 043504 (2018).