In cooperation with the Iranian Nuclear Society

Study on structural, dynamical, and thermal properties of nuclear fuel thorium mononitride using first-principles calculations

Document Type : Research Paper

Authors

Department of Physics, Sharif University of Technology, P.O.Box: 11155-9161, Tehran - Iran

Abstract
This paper explores the vibrational, thermophysical, and structural properties of thorium nitride using density functional theory. An agreement is observed between the calculated and experimental properties of the lattice constant and bulk modulus. In the density functional perturbation theory, diagrams of phonon spectrums and vibrational densities of states along high symmetry paths are calculated. Based on the phonon dispersion diagram, no imaginary frequencies are found, indicating that the crystalline structure is dynamically stable. The compound also exhibits a phonon gap in the range 154-300 cm-1. Under high temperature and pressure, quasi-harmonic Debye models are used to evaluate thermodynamic properties such as Debye temperature, thermal expansion coefficient, entropy isothermal bulk modulus, and vibrational specific heat capacity. As the temperature increases, the volume of the system at a constant pressure decreases, while it increases for all pressures at a constant temperature. As temperature increases at a constant pressure, the coefficient of thermal expansion increases, indicating that the crystalline lattice is transferring more heat.

Highlights

  1. Wang H, Lan J-Q, Hu C-E, Chen X-R, Geng H-Y. Electronic structure, elastic and thermal transport properties of thorium monocarbide based on first-principles study. J. Nucl. Mater. 2019;524:141-148.

 

  1. Daroca D.P, Jaroszewicz S, Llois A.M, Mosca H.O. Phonon spectrum, mechanical and thermophysical properties of thorium carbide. J. Nucl. Mater. 2013;437:135-138.

 

  1. Zhang Y, Guo Y, Liao Z, Liu C, Huai P, Zhu Z, Ke X. Ab initio investigation of pressure-induced structural transitions and electronic evolution of Th3N4. High Pressure Res. 2020;40: 267-282.

 

  1. Gerward L, Staun Olsen J, Benedict U, Itié J-P, Spirlet J. The crystal structure and the equation of state of thorium nitride for pressures up to 47 GPa. J. Appl. Crystallogr. 1985;18:339-341.

 

  1. Malakkal L, Prasad A, Jossou E, Ranasinghe J, Szpunar B, Bichler L, Szpunar J. Thermal conductivity of bulk and porous ThO2: atomistic and experimental study. J. Alloys Compd. 2019:798;507-516.

 

  1. Wedgwood F. Actinide chalcogenides and pnictides. III. Optical-phonon frequency determination in UX and ThX compounds by neutron scattering. J. Phys. C: Solid State Phys. 1974;7:3203.

 

  1. Arif Khalil R, Hussain M.I, Saeed N, Rana A.M, Hussain F. The prediction of structural, electronic, optical and vibrational behavior of ThS2 for nuclear fuel applications: a DFT study, Opt. Quantum Electron. 2021;53:1-15.

 

  1. Shein I, Ivanovskii A. Ab initio study of elastic and electronic properties of cubic thorium pnictides ThPn and Th3Pn4 (Pn= P, As, and Sb). Solid State Sci. 2010;12:2106-2112.

 

  1. Siddique M, Rahman A.U, Iqbal A, Haq B.U, Azam S, Nadeem A, Qayyum A. A Systematic First-Principles Investigation of Structural, Electronic, Magnetic, and Thermoelectric Properties of Thorium Monopnictides ThPn (Pn= N, P, As): A Comparative Analysis of Theoretical Predictions of LDA, PBEsol, PBE-GGA, WC-GGA, and LDA+U Methods. Int. J. Thermophys. 2019;40:1-21.

 

  1. Yan Y, Wang F, Wang L, Chen R, Lv J. Mechanical stability and superconductivity of PbO-type phase of thorium monocarbide at high pressure. Comput. Mater. Sci. 2017;136:238-242.

 

  1. Shields A.E, Santos-Carballal D, De Leeuw N.H. A density functional theory study of uranium-doped thoria and uranium adatoms on the major surfaces of thorium dioxide. J. Nucl. Mater. 2016;473:99-111.

 

  1. Liu J, Dai Z, Yang X, Zhao Y, Meng S. Lattice thermodynamic behavior in nuclear fuel ThO2 from first principles. J. Nucl. Mater. 2018;511:11-17.

 

  1. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009;21:395502.

 

  1. Perdew J.P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865.

 

  1. Pack J.D, Monkhorst H.J. "Special points for Brillouin-zone integrations"—a reply. Phys. Rev. B: Condens. Matter. 1977;16:1748.

 

  1. Kulik H.J, Cococcioni M, Scherlis D.A, Marzari N. Density functional theory in transition-metal chemistry: A self-consistent Hubbard U approach. Phys. Rev. Lett. 2006;97:103001.

 

  1. Pfrommer B.G, Côté M, Louie S.G, Cohen M.L. Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 1997;131:233-240.

 

  1. Baroni S, Giannozzi P, Isaev E. Density-functional perturbation theory for quasi-harmonic calculations. Rev. Mineral. Geochem. 2010;71:39-57.

 

  1. Otero-de-la-Roza A, Abbasi-Pérez D, Luaña V. Gibbs2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 2011;182:2232-2248.

 

  1. Sahafi M, Mahdavi M. First principles study on phonon dispersion, mechanical and thermodynamic properties of ThP. Mater. Today Commun. 2021;26:101951.

 

  1. Sahafi M, Mahdavi M. Ab initio investigations on lattice dynamics and thermal characteristics of ThO2 using Debye–Einstein model. Bull. Mater. Sci. 2021;44:1-9.

Keywords


  1. Wang H, Lan J-Q, Hu C-E, Chen X-R, Geng H-Y. Electronic structure, elastic and thermal transport properties of thorium monocarbide based on first-principles study. J. Nucl. Mater. 2019;524:141-148.

 

  1. Daroca D.P, Jaroszewicz S, Llois A.M, Mosca H.O. Phonon spectrum, mechanical and thermophysical properties of thorium carbide. J. Nucl. Mater. 2013;437:135-138.

 

  1. Zhang Y, Guo Y, Liao Z, Liu C, Huai P, Zhu Z, Ke X. Ab initio investigation of pressure-induced structural transitions and electronic evolution of Th3N4. High Pressure Res. 2020;40: 267-282.

 

  1. Gerward L, Staun Olsen J, Benedict U, Itié J-P, Spirlet J. The crystal structure and the equation of state of thorium nitride for pressures up to 47 GPa. J. Appl. Crystallogr. 1985;18:339-341.

 

  1. Malakkal L, Prasad A, Jossou E, Ranasinghe J, Szpunar B, Bichler L, Szpunar J. Thermal conductivity of bulk and porous ThO2: atomistic and experimental study. J. Alloys Compd. 2019:798;507-516.

 

  1. Wedgwood F. Actinide chalcogenides and pnictides. III. Optical-phonon frequency determination in UX and ThX compounds by neutron scattering. J. Phys. C: Solid State Phys. 1974;7:3203.

 

  1. Arif Khalil R, Hussain M.I, Saeed N, Rana A.M, Hussain F. The prediction of structural, electronic, optical and vibrational behavior of ThS2 for nuclear fuel applications: a DFT study, Opt. Quantum Electron. 2021;53:1-15.

 

  1. Shein I, Ivanovskii A. Ab initio study of elastic and electronic properties of cubic thorium pnictides ThPn and Th3Pn4 (Pn= P, As, and Sb). Solid State Sci. 2010;12:2106-2112.

 

  1. Siddique M, Rahman A.U, Iqbal A, Haq B.U, Azam S, Nadeem A, Qayyum A. A Systematic First-Principles Investigation of Structural, Electronic, Magnetic, and Thermoelectric Properties of Thorium Monopnictides ThPn (Pn= N, P, As): A Comparative Analysis of Theoretical Predictions of LDA, PBEsol, PBE-GGA, WC-GGA, and LDA+U Methods. Int. J. Thermophys. 2019;40:1-21.

 

  1. Yan Y, Wang F, Wang L, Chen R, Lv J. Mechanical stability and superconductivity of PbO-type phase of thorium monocarbide at high pressure. Comput. Mater. Sci. 2017;136:238-242.

 

  1. Shields A.E, Santos-Carballal D, De Leeuw N.H. A density functional theory study of uranium-doped thoria and uranium adatoms on the major surfaces of thorium dioxide. J. Nucl. Mater. 2016;473:99-111.

 

  1. Liu J, Dai Z, Yang X, Zhao Y, Meng S. Lattice thermodynamic behavior in nuclear fuel ThO2 from first principles. J. Nucl. Mater. 2018;511:11-17.

 

  1. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009;21:395502.

 

  1. Perdew J.P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865.

 

  1. Pack J.D, Monkhorst H.J. "Special points for Brillouin-zone integrations"—a reply. Phys. Rev. B: Condens. Matter. 1977;16:1748.

 

  1. Kulik H.J, Cococcioni M, Scherlis D.A, Marzari N. Density functional theory in transition-metal chemistry: A self-consistent Hubbard U approach. Phys. Rev. Lett. 2006;97:103001.

 

  1. Pfrommer B.G, Côté M, Louie S.G, Cohen M.L. Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 1997;131:233-240.

 

  1. Baroni S, Giannozzi P, Isaev E. Density-functional perturbation theory for quasi-harmonic calculations. Rev. Mineral. Geochem. 2010;71:39-57.

 

  1. Otero-de-la-Roza A, Abbasi-Pérez D, Luaña V. Gibbs2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 2011;182:2232-2248.

 

  1. Sahafi M, Mahdavi M. First principles study on phonon dispersion, mechanical and thermodynamic properties of ThP. Mater. Today Commun. 2021;26:101951.

 

  1. Sahafi M, Mahdavi M. Ab initio investigations on lattice dynamics and thermal characteristics of ThO2 using Debye–Einstein model. Bull. Mater. Sci. 2021;44:1-9.