[2] J. Dezuane, Hand Book of Drinking Water Quality, 2nd ed., Vannos Trand Reinhold, (1997).
[3] G. Aidan, Agricultural wastes and activated carbon from them for furfural removal from water solutions, Life Sci. J. 9 (2012) 2501-2505.
[4] B.H. Diya’uddeen, W.M.A.W. Daud, A.R. Abdul Aziz, Treatment technologies for petroleum refinery effluents: a review, Process Saf. Environ. Prot. 89 (2011) 95–105.
[5] S.J. Kulkarni, J.P. Kaware, Review on research for removal of phenol from wastewater, Int. J. Sci. Res. Pub. 3 (2013) 1–5.
[6] A. Coelho, A.V. Castro, M. Dezotti, G.L. Sant’Anna Jr, Treatment of petroleum refinery sourwater by advanced oxidation processes, J. Hazard. Mater. 137 (2006) 178-184.
[7] M.A. Oturan, J.J. Aaron, Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review, Crit. Rev. Env. Sci. Technol. 44 (2014) 2577–2641.
[8] F.J. Beltran, M. Gonzalez, F.J. Gonzalez, Industrial wastewater advanced oxidation Water Res. 31 (1997) 2405-2414.
[9] H. Bao, Y. Liu, H. Jia, A study of irradiation in the treatment of wastewater, Rad. Phys. Chem. 63 (2002) 633-636.
[10] W.J. Cooper, E. Cadavid, M.G. Nickelsen, K. Lin, C.N. Kurucz, T.D. Waite, Removing THMs from drinking water using high-energy electron-beam irradiation, American Water Works Association (AWWA) 85 (1993) 106–112.
[11] W.J. Cooper, D.E. Meacham, M.G. Nickelsen, K.Lin, D.B. Ford, C.N. Kurucz, T.D. Waite, The removal of tri-(TCE) and tetrachloroethylene (PCE) from standard solution using high energy electrons, J. Air Waste Manag. Assoc. 43 (1993) 1358–1366.
[12] IAEA-TECDOC-1407. Status of industrial scale radiation treatment of wastewater and its future (2003).
[13] A. Behjat, M.R. Parsaeian, F. Anvari, M. Kheirkhah, M.R. Tahami, Dicolorization of Reactive Dyes in Aqueous Solutions Using Ionizing Electron Beam Radiation, J. Water Waste water, 20 (2009) 26-31.
[14] C. Kuchhoft, R. Lishka, Sensitive 4-aminoantipyrine method for phenolic compounds, Anal. Chem. 23 (1951) 1783–1788.
[15] M. William Jr. Foley, E. Guy Sanford, Jr. Herbert McKennis, The mechanism of the reaction of aniline with furfural in the presence of acid, J. Am. Chem. Soc. 74 (1952) 5489–5491.
[16] J. Hoigne, H. Bader, The role of hydroxyl radical reactions in ozonation processes in standard solutions, Water Res. 10 (1976) 377–386.
[17] S.M. Borghei, S.N. Hosseini, Comparison of furfural removal by different photooxidation methods, Chem. Eng. J. 139 (2008) 482–488.
[18] E.M. Knipping, M.J. Lakin, K.L. Foster, P. Jungwirth, D.J. Tobias, R.B. Gerber, D. Dabdub, B.J. Finlayson-Pitts, Experiments and simulations of ion-enhanced interfacial chemistry on standard NaCl aerosols, Science, 288 (2000) 301–306.
[19] C. Kang, X. Tang, X. Jiao, P. Guo, F. Quan, X. Lin, Degradation of Furfural by UV/O3 Technology, Chem. Res. Chinese. U. 25 (2009) 451-454.
[20] E-S.Z. El-Ashtoukhy, Y.A. El-Taweel, O. Abdelwahab, E.M. Nassef, Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor, Int. J. Electrochem. Sci. 8 (2013) 1534–1550.
[21] O. Abdelwahab, N.K. Amin, E-S.Z. El-Ashtoukhy, Electrochemical removal of phenol from oil refiner y wastewater, J. Hazard. Mater. 163 (2009) 711–716.