In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Author

Abstract

This research is dedicated to modeling  the wiikit uranium ore for HLW radioactive waste storing. At first, during X-ray Crystallography it was determined that wiikit has metamict structure. Then SEM revealed the U phase and different mineral phases that could be regarded as a reason for being amorphous. EMP was used to determine the chemical composition of the sample showing that wiikit contains 4% of uranium. The radioactive elements U and Th were separated by ion exchange chromatography using Dowex АВ-17-8 anion exchanger. During the next stage, the U and Th sources were prepared by molecular plating. Alpha-spectroscopy of the U and Th sources revealed high deficit in 234U/238U activity ratios, which violates secular equilibrium in the series of 238U decay. Finally, according to the results obtained by the behavior analysis of the U and Th atoms in this wiikit, modeling of the wiikit as 237Np, 239Pu, 241Am, 242Cm, 244Cm radioactive waste matrices and other heavy radioisotopes was performed when neutral oxides such as Al2O3,SiO2, Fe2O3 were added.

Keywords

[1] H. Muller, Metamict minerals as model substances for radwaste, Conference on the treatment and containment of radioactive waste and its disposal in environments, Cape Town, South Africa, 7-12 September (1986).
 
[2] В.В. Чердынцев. Уран-234. М., Атомиздат, (1969). (V.V. Cherdyntsev, “Uranium-234”, Atomizdat (1969)) (in Russian).
 
[3] П.И. Чалов. Изотопное фракционирование природного урана. Фрунзе, (1967). (P.I.. Chalov, “Isotopic fractionation of natural uranium, Frunze (1967) (in Russian).
 
[4] J.K. Osmond, J.B. Cowart, Natural uranium and thorium series disequilibrium: New approaches to geochemical problems, Nuclear Sci. Appl. 1 (1982) 303–352.
 
[5] N. Ivanovich, R.S. Harmon, eds., Uranium Series     Disequilibrium. Application to Environmental Problems, Clarendon Press, Oxford (1982).
 
[6] И.Е. Старик, Форма нахождения и условия первичной миграции радиоэлементов в природе, Успехи химии. 12 (1943) 287. (I.E. Starik, Forma nakhozhdeniya i usloviya pervichnoy migratsii radioelementov v prirode, Uspekhi Khimii. 12 (1943) 287 (in Russian).
 
[7] И.Е. Старик и др. Труды V сессии комиссии по определению абсолютного возраста геологических формаций. М. Акад. НаукСССР. (1958). (I.E. Starik i dr. Trudy V sessii komissii po opredeleniyu absolyutnogo vozrasta geologicheskikh formatsiy. M. Akad. NaukSSSR. (1958) (in Russian).
 
[8] И.Е. Старик, К.Ф. Лазарев, О форме нахождения атомов урана и тория в радиоактивных минералах, Радиохимия. 1 (1959) 60–65. (I.E. Starik, K.F. Lazarev, On the form of uranium and thorium atoms in radioactive minerals, Radiokhimiya. 1 (1959) 60–65 (in Russian).
 
[9] И.Е. Старик, Н.И. Полевая, Выщелачиваемость ThX и RdTh из минералов, Труды Радиевого института Акад. НаукСССР. 6 (1957) 104–118. (I.E. Starik, N.I. Polevaya, Viishelachivaemost ThX i RdTh iz mineralov, Trudy radievogo instituta Akad. Nauk SSSR, 6 (1957) 104–118. (in Russian).
 
[10] A. Kobashi, T. Tominaga, Study on physicochemical states of uranium, thorium, and radium isotopes in Some Radioactive minerals by the leaching method, Radiochim. Acta. 30 (1982) 205–212.
 
[11] G.R. Lumpkin, E.M. Foltyn, R.C Ewing, Thermal recrystallyzation of alpha-recoil damaged minerals of the pyrochlore structure type, J. of Nuclear Materials. 139 (1986) 113–120.
 
[12] G.R. Lumpkin, R.C. Ewing, Transmission electron microscopy of alpha-decay damage and alteration of betafite, 45th Annual Meeting of the Electron Microscopy Society of America. (1987) 376–377.
 
[13] K.A. Richardson, Thorium, uranium, and potassium in the Conway granite. New Hampshire, U.S.A. Natural Radiation Environment (J. A. S. Adams and W.M. Lewder, eds.) Chicago: University of Chicago Press. (1963) 39–50.
 
[14] A. Kobashi, J. Sato, N. Saito, Radioactive disequilibrium with uranium, thorium and radium isotopes leached from euxenite, Radiochim. Acta. 26 (1979) 107–111.
 
[15] М.В. Соболева, И.А. Пудовкина,  Минералы урана. М.  (1957) 332–340 (M.V. Coboleva, I.A. Pudovkina, Uranium minerals. М. (1957) 332–340 (in Russian).
 
[16] Минералогическая энциклопедия. Под ред. К. Фрея. Л., «Недра», 489 (1985). (Encyclopedia of minerals. Edited by K. Freya. L., «Nedra», 489 (1985) (in Russian).
 
[17] A.E. Ringwood, Disposal of high-level nuclear Wastes: A geological perspective, Mineral Mag. 49 (1985) 159.
 
[18] О. Самуэльсон, Ионообменные разделения в аналитической химии, (1966) 288–301 (O. Samuelson, Ion exchange separation in analytical chemistry, (1966) 288–301 (in Russian).
 
[19] W. Parker, R. Falk, Molecular plating: a method for the electrolytic formation of thin inorganic films, Nucl. Instrum. Meth. 16 (1962) 355–359.
 
[20] W. Parker, H. Bildstein, N. Getoff, Quantitative Electrodeposition of Thorium and Uranium, Nature. 200 (1963) 457–458.
 
[21] M. Weber, N. Trautmann, H. Menke, Herstellung duenner Praeparate durch Molecularplating, Inst. für Kernchemie der Univ. Mainz Jahresbericht 1974, Mainz. (1975) 118–121.
 
[22] P.J. Shirvington, Fixation of radionuclides in the 238U decay series in the vicinity of mineralized zones: the Austatom Uranium Prospect, Northern Territory, Australia, Geochim. Cosmochim. Acta. 47 (1983) 403–412.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[23] Z.Z. Sheng, P.K. Kuroda, Isotopic fractionation of uranium: extremely high enrichments of 234U in the acid-residues of a Colorado carnotite, Radiochim. Acta. 39 (1986) 131–138.
 
[24] Z.Z. Sheng, P.K. Kuroda, Further studies on the separation of acid residues with extremely high 234U/238U ratios from a Colorado Carnotite, Radiochim. Acta. 40 (1986) 95–102.