Due to their better stability and high performance for X- and gamma-ray detection, quasi-two-dimensional (2D) lead halide perovskites have demonstrated excellent ability to be used in scintillators, compared to three-dimensional (3D) perovskites. In the current study, the stability of 2D-layered HA2CsPb2I7 was investigated relative to the α-CsPbI3 crystal structure. It is demonstrated that the charge transfer of hydrogen atoms connected to nitrogen and iodine atoms close to organic molecules in the 2D structure. This results in a change in charge distribution over the perovskite structure. Hence, the structural stability of the 2D structure was much better than the cubic structure of α-CsPbI3. Despite the more stability of quasi-2D perovskite, the presence of large organic molecules in this structure led to lower mechanical stability than its 3D counterpart, α-CsPbI3. In other words, this material has less tolerance for the pressure of time. According to the results, scintillation detectors based on 2D lead halide perovskites can be less efficient in harsh conditions than their 3D counterparts.
Highlights
Zhou F, Li Z, Lan W, Wang Q, Ding L, Jin Z. Halide Perovskite, a Potential Scintillator for X‐Ray Detection. Small Methods. 2020;4:2000506.
Kishimoto S, Shibuya K, Nishikido F, Koshimizu M, Haruki R, Yoda Y. Subnanosecond time-resolved x-ray measurements using an organic-inorganic perovskite scintillator. App. Phys. Let. 2008;93:261901.
Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H-H, Wang C, Ecker B.R, Gao Y, Loi M.A, Cao L, Huang J. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystal. Nature Photonics. 2016;10:333.
Leijtens T, Eperon G.E, Noel N.K, Habisreutinger S.N, Petrozza A, HJ Snaith H.J. Stability of metal halide perovskite solar cells. Advanced Energy Materials. 2015;5:1500963.
Shpatz Dayan A, Cohen B.E, Aharon S, Tenailleau Ch, Wierzbowska M, Etgar L. Enhancing stability and photostability of CsPbI3 by reducing its dimensionality. Chem. Mat. 2018;30:8017.
Kumar S, Jagielski J, Yakunin S, Rice P, Chiu Y.C, Wang M, Nedelcu G, Kim Y, Lin S, Santos E.J.G, Kovalenko M.V, Shih C-J. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano. 2016;10:9720.
Lin J.T, Liao C.C, Hsu C.S, Chen D.G, Chen H.M, Tsai M.K, Chou P.T, Chiu C.W. Harnessing dielectric confinement on Tin perovskite to achieve emission quantum yield up to 21%. J. Am. Chem. Soc. 2019;141:10324.
Datta A, Fiala J, Motakef S. 2D perovskite-based resolution X-ray detectors. Sci. Rep. 2021;11:22897.
Gao H, Wei W, Li L, Tan Y, Tang Y. Mechanical properties of a 2D lead-halide perovskite, (C6H5CH2NH3) 2PbCl4, by nanoindentation and first-principles calculations. The Journal of Physical Chemistry. C. 2020;124(3):19204-19211.
Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule. 2018;2:1356.
https://dalcorso.github.io/thermo_pw.
Voigt W. Lehrbuch der kristallphysik: (mit ausschluss der kristalloptik). BG Teubner. 1910;3.
Landau L.D, Lifshitz E.M. Theory of elasticity, 3rd ed. Pergamon Press, Oxford. 1986.
Afsari M, Boochani A, Hantezadeh M. Electronic, optical and elastic properties of cubic perovskite CsPbI3: Using first principles study. Optik. 2016;127(2):11433.
Kaxiras E. Atomic and electronic structure of solids, 1st ed. Cambridge University Press, Cambridge. 2003.
Zhou F, Li Z, Lan W, Wang Q, Ding L, Jin Z. Halide Perovskite, a Potential Scintillator for X‐Ray Detection. Small Methods. 2020;4:2000506.
Kishimoto S, Shibuya K, Nishikido F, Koshimizu M, Haruki R, Yoda Y. Subnanosecond time-resolved x-ray measurements using an organic-inorganic perovskite scintillator. App. Phys. Let. 2008;93:261901.
Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H-H, Wang C, Ecker B.R, Gao Y, Loi M.A, Cao L, Huang J. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystal. Nature Photonics. 2016;10:333.
Leijtens T, Eperon G.E, Noel N.K, Habisreutinger S.N, Petrozza A, HJ Snaith H.J. Stability of metal halide perovskite solar cells. Advanced Energy Materials. 2015;5:1500963.
Shpatz Dayan A, Cohen B.E, Aharon S, Tenailleau Ch, Wierzbowska M, Etgar L. Enhancing stability and photostability of CsPbI3 by reducing its dimensionality. Chem. Mat. 2018;30:8017.
Kumar S, Jagielski J, Yakunin S, Rice P, Chiu Y.C, Wang M, Nedelcu G, Kim Y, Lin S, Santos E.J.G, Kovalenko M.V, Shih C-J. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano. 2016;10:9720.
Lin J.T, Liao C.C, Hsu C.S, Chen D.G, Chen H.M, Tsai M.K, Chou P.T, Chiu C.W. Harnessing dielectric confinement on Tin perovskite to achieve emission quantum yield up to 21%. J. Am. Chem. Soc. 2019;141:10324.
Datta A, Fiala J, Motakef S. 2D perovskite-based resolution X-ray detectors. Sci. Rep. 2021;11:22897.
Gao H, Wei W, Li L, Tan Y, Tang Y. Mechanical properties of a 2D lead-halide perovskite, (C6H5CH2NH3) 2PbCl4, by nanoindentation and first-principles calculations. The Journal of Physical Chemistry. C. 2020;124(3):19204-19211.
Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule. 2018;2:1356.
https://dalcorso.github.io/thermo_pw.
Voigt W. Lehrbuch der kristallphysik: (mit ausschluss der kristalloptik). BG Teubner. 1910;3.
Landau L.D, Lifshitz E.M. Theory of elasticity, 3rd ed. Pergamon Press, Oxford. 1986.
Afsari M, Boochani A, Hantezadeh M. Electronic, optical and elastic properties of cubic perovskite CsPbI3: Using first principles study. Optik. 2016;127(2):11433.
Kaxiras E. Atomic and electronic structure of solids, 1st ed. Cambridge University Press, Cambridge. 2003.
Nazari,S. and Babaei Bidmeshki,N. (2024). An ab-initio study of mechanical properties and stability of the
quasi-two-dimensional HA2CsPb2I7 perovskite and inorganic CsPbI3. Journal of Nuclear Science, Engineering and Technology (JONSAT), 45(2), 137-143. doi: 10.24200/nst.2024.1573
MLA
Nazari,S. , and Babaei Bidmeshki,N. . "An ab-initio study of mechanical properties and stability of the
quasi-two-dimensional HA2CsPb2I7 perovskite and inorganic CsPbI3", Journal of Nuclear Science, Engineering and Technology (JONSAT), 45, 2, 2024, 137-143. doi: 10.24200/nst.2024.1573
HARVARD
Nazari,S.,Babaei Bidmeshki,N. (2024). 'An ab-initio study of mechanical properties and stability of the
quasi-two-dimensional HA2CsPb2I7 perovskite and inorganic CsPbI3', Journal of Nuclear Science, Engineering and Technology (JONSAT), 45(2), pp. 137-143. doi: 10.24200/nst.2024.1573
CHICAGO
S. Nazari and N. Babaei Bidmeshki, "An ab-initio study of mechanical properties and stability of the
quasi-two-dimensional HA2CsPb2I7 perovskite and inorganic CsPbI3," Journal of Nuclear Science, Engineering and Technology (JONSAT), 45 2 (2024): 137-143, doi: 10.24200/nst.2024.1573
VANCOUVER
Nazari,S.,Babaei Bidmeshki,N. An ab-initio study of mechanical properties and stability of the
quasi-two-dimensional HA2CsPb2I7 perovskite and inorganic CsPbI3. Journal of Nuclear Science, Engineering and Technology (JONSAT), 2024; 45(2): 137-143. doi: 10.24200/nst.2024.1573