[1] K. Furukawa, K. Arakawa, A road map for the realization of global-scale thorium breeding fuel cycle by single molten-fluoride flow, Energy Conv. and Manag. 49 (2008) 1832-1848.
[2] M.S. Wickleder, B. Fourest P.K. Dorhout, The Chemistry of the Actinide and Transactinide Elements, 4th edition, Springer, Vol. 1 (2010) 52-55.
[3] K.C. Bhainsa, S.F. D’Souza, Thorium biosorption by Aspergillus fumigatus, a filamentous fungal biomass, J. Hazard. Mat.165 (2009) 670-676.
[4] B. Volesky, Sorption and Biosorption, BV-Sorbex, Inc., Canada, (2003).
[5] H.F. Walton, R.D. Rocklin, Ion Exchange in Analytical Chemistry, CRC Press, Boca Raton, FL, (1990).
[6] R. Keim, Gmelin Handbook of Inorganic Chemistry, Uranium Supplement, Cation-Exchange and Chromatography, Springer-Verlag, Berlin, (1993).
[7] N. Demirel, M. Merdivan, Thorium (IV) and uranium (VI) sorption studies on octacarboxymethyl–C–methyl calixresorcinarene impregnated on a polymeric support, Analytica Chimica Acta 485 (2003) 213-219.
[8] Z. Talip, M. Eral, U. Hicsonmez, Adsorption of thorium from aqueous solutions by perlite, J. Environ. Radio. 10 (2009) 139-143.
[9] M. Metaxas, V. Kasselouri-Rigopoulou, P. Galiatsatou, C. Konstantopoulou, D. Oikonomou, Thorium removal by different adsorbents, J. Hazard. Mat. 97 (2003) 71-82.
[10] A. Dyer, L.C. Jozefowicz, The removal of thorium from aqueous solutions using zeolites, J. Radio. Nucl. Chem. 159 (1992) 47-62.
[11] U. Kumar, Agricultural products and by-products as a low cost adsorbent for heavy metal removal from water and wastewater: A review, Scient. Res.and Essay 1 (2006) 33-37.
[12] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manag. 92 (2011) 407-418.
[13] M. Ghasemian, A.R. Keshtkar, R. Dabbagh, S.J. Safdari, Biosorption of uranium (VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: Breakthrough curves studies and modeling, J. Hazard. Mat. 189 (2011) 141-149.
[14] D. Lu, Q. Cao, X. Li, X. Cao, F. Luo, W. Shao, Kinetics and equilibrium of Cu (II) adsorption onto chemically modified orange peel cellulose biosorbents, Hydrometallurgy 95 (2009) 145-152.
[15] S. Schiewer, M. Iqbal, The role of pectin in Cd binding by orange peel biosorbents: A comparison of peels, depectinated peels and pectin acid, J. Hazard. Mat. 177 (2010) 899-907.
[16] A. Chatterjee, S. Schiewer, Biosorption of Cadmium (II) Ions by Citrus Peels in a Packed Bed Column: Effect of Process Parameters and Comparison of Different Breakthrough Curve Models', Clean-Soil Air Water 39 (2011) 874-881.
[17] A.B. Perez Marin, M.I. Aguilar, V.F. Meseguer, J.F. Ortuno, J. Saez, M. Llorens, Biosorption of chromium (III) by orange (Citrus Sinensis) waste: Batch and continuous studies, Chem. Eng. J. 155 (2009) 199-206.
[18] A. Movafaghpour, Kinetic and isotherm studies for biosorption of Thorium on orange peel, Tehran University, M.SC. Thesis (2013).
[19] E. Malkoc, Y. Nuhoglu, Removal of Ni (II) ions from aqueous solutions using waste of tea factory: Adsorption on a fixed-bed column, J. of Hazard. Mat. 135 (2006) 328-336.
[20] M. R. Lasheen, N. S. Ammar, H. S. Ibrahim, Adsorption/desorption of Cd (II), Cu (II) and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies, Solid State Sciences 14 (2012) 202-210.
[21] Thomas, H. C., Heterogeneous ion exchange in following system, J. Am. Chem. Sec. 66 (1994) 1646-1664.
[22] Z. Aksu, F. Gonen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Bioch. 39 (2004) 599-613.
[23] R. Gnanasambandam, A. Proctor, Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy, Food Chem. 68 (2000) 327–332.