Document Type : Research Paper
Authors
Highlights
[1] U. Ewert, U. Zscherpel, Replacement of film radiography by digital techniques and enhancement of image quality, NDT.net 12(6) (2007) 14.
[2] F.R. Sasnin, Estimation of parameters of radiographic images of defects, RUSS. J. NONDESTRUCT 4 (1988) 40-44.
[3] A. El-Zaart, Synthetic aperture radar images segmentation using minimum cross entropy with Gamma distribution, SIPIJ 6 (2015) 19-31.
[4] G. Gao, X. Qin, S. Zhou, Modeling SAR images based on a generalized gamma distribution for texture component, PIER Journal 137 (2013) 669-685.
[5] A.M. Achim, E.E. Kuruoglu, J. Zerubia, Maximum a posteriori estimation of radar cross section in SAR images using the heavy-tailed Rayleigh model, EUSIPCO 2005,IEEE Conference Publications(2005) 1-4.
[6] A. Achim, E.E. Kuruglu, J. Zerubia, SAR Image Filtering Based on the Heavy-Tailed Rayleigh Model, IEEE Trans. Image Proc. 15 (9) (2006) 2686-2693.
[7] S. Sayama, S. Ishii, Suppression of Log-Normal Distributed Weather Clutter Observed by an S-Band Radar, WET 4(3) (2013) 125-133.
[8] J. Liang, Q. Liang, S. Samn, A Propagation Environment Modeling in Foliage, EURASIP. J. Wirel. Commun. Netw. (2010) 12.
[9] G. Moser, J. Zerubia, S.B. Serpico, SAR Amplitude Probability Density Function Estimation Based on a Generalized Gaussian Model, IEEE Trans. Image Proc. 15 (6) (2006) 1428-1442.
[10] X. Huang, A.C. Madoc, Image and Its Noise Removal in Nakagami Fading Channels, ICACT 2006 1 (2006) 570-573.
[11] EN 444, Non-destructive testing—General principles for radiographic examination of metallic materials by X- and gamma-rays (1994).
[12] EN 462-1, Non-destructive testing–Image quality of radiographs–Part 1: Image quality indicators (wire type)–Determination of image quality value (1994).
[13] EN 473, Non-destructive testing-Qualification and certification of NDT personnel-General principles (2000).
[14] EN 584-2, Non-destructive testing–Industrial radiographic film–Part 2: Control of film processing by means of reference value.
[15] EN 1435, Non-destructive testing of welds—Radiographic testing of welded joints (includes amendments A1:2002 and A2:2003) (1997).
[16] EN 12681, Founding-Radiographic examination (2003).
[17] H.E. Johns, J.R. Canningham, The physics of radiology, fourth edition (1983) 796.
[18] J.H. Hubbell, Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV, NSRDS-NBS 29 (1969) 85.
[19] G. Abdel-Azim, Z.A. Abo-Eleneen, A Novel Algorithm for Image Thresholding Using non Parametric Fisher Information, ECEA-1 1 (2014) 12.
[20] H. Wang, P. Li, T. Zhang, Histogram feature-based Fisher linear discriminant for face detection, Neural Comput. Appl. 17 (2008) 49–58.
[21] I. Valavanis, D. Kosmopoulos, Multiclass defect detection and classification in weld radiographic images using geometric and texture features, Expert Syst. Appl. 37 (2010) 7606-7614.
[22] R. Hou, D. Du, J. Shao, L. Wang, B. Chang, Segmentation of Weld Defects in X-ray Image Based on Partial Surface Reconstruction, 17th WCNDT, Shanghai, China 92 (2008)12.
[23] B. Venkatraman, M.M. Anishin Raj, V. Vaithiyanathan, Weld Defect Detection Using Iterative Image Reconstruction Methods, Indian. J. Sci. Technol. 6 (4) (2013) 4378-4383.
[24] M. Tridi, S. Belaifa, N. Nacereddine, Weld defect classification using EM algorithm for Gaussian mixture model, SETIT 2005, TUNISIA (2005) 6.
Keywords