Document Type : Scientific Note
Authors
Highlights
[1] K.H. Han, S.H. Chang, Development of a thermal-hydraulic analysis code for annular fuel assemblies, Nuclear Engineering and Design226 (2003) 267-275.
[2] Y.S. Yang, C.H. Shin, T.H. Chun, K.W. Song, Evaluation of a dual-cooled annular fuel heat split and temperature distribution, Nucl. Sci.Tech.46 (2009) 836-845.
[3] M. Kazimi, P. Hejzlar, Evaluation of high power density annular fuel for Korean OPR-1000 reactor: final report, Internal Report (2010).
[4] S.U. Choi, Nanofluids: from vision to reality through research, Heat Transfer 131 (2009) 83-106.
[5] M. Assael, C.F. Chen, I. Metaxa, W. Wakeham, Thermal conductivity of suspensions of carbon nanotubes in water, Thermophysics 25 (2004) 971-985.
[6] S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, Heat Transfer 125 (2003) 567-574.
[7] K.H. Han, K.W. Seo, D.H. Hwang, S.H. Chang, Development of a thermal hydraulic analysis code for gas-cooled reactors with annular fuels, Nucl.Eng. Des. 236 (2006) 164-178.
[8] G. Ansarifar, M. Ebrahimian, Design and neutronic investigation of the Nano fluids application to VVER-1000 nuclear reactor with dual cooled annular fuel, Annals of Nuclear Energy 87 (2016) 39-47.
[9] K. Hadad, A. Hajizadeh, K. Jafarpour, B. Ganapol, Neutronic study of nanofluids application to VVER-1000, Ann. Nucl. Energy 37 (2010) 1447-1455.
[10] J. Donnelly, A user's manual for the Chalk River version of WIMS, Atomic Energy of Canada Limited, (1986).
[11] T. Fowler, D. Vondy, NUCLEAR REACTOR CORE ANALYSIS CODE: CITATION, Oak Ridge National Lab. Tenn (1969).
[12] C.H. Shin, T.H. Chun, D.S. Oh, W.K. In, Thermal hydraulic performance assessment of dual-cooled annular nuclear fuel for OPR-1000, Nucl. Eng. Des.243 (2012) 291-300.
[13] X.Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review, Therm. Sci. 46 (2007) 1-19.
[14] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Heat Mass Transfer 43 (2000) 3701-3707.
[15] C.H. Chon, K.D. Kihm, S.P. Lee, S.U. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett.87 (2005) 107-123.
[16] H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, New temperature dependent thermal conductivity data for water-based nanofluids, Therm. Sci.48 (2009) 363-371.
[17] N. Masoumi, N. Sohrabi, A. Behzadmehr, A new model for calculating the effective viscosity of nanofluids, Appl. Phys. 42 (2009) 5501-5508.
[18] M.M. El-Wakil, Powerplant technology: Tata McGraw-Hill Education (1988).
[19] W. Jens, P. Lottes, Analysis of heat transfer, burnout, pressure drop and density date for high-pressure water, Argonne National Lab. (1951).
[20] J.R. Lamarsh, Introduction to nuclear reactor theory: Addison-Wesley Reading, MA (1966).
[21] I.H. Bae, M.G. Na, Y.J. Lee, G.C. Park, Calculation of the power peaking factor in a nuclear reactor using support vector regression models, Ann. Nucl. Energy35 (2008) 2200-2205.
Keywords