Document Type : Research Paper
Authors
1 Department of Physics, University of Birjand Birjand - Iran
2 Department of Nuclear Engineering, Esfahan University-Esfahan – Iran
Highlights
[1] C.S. Shlea, D.H. Stoddard, Californium isotopes proposed for intracavity and interstitial radiation therapy with neutrons, Nature, 206 (1965) 1058-1059.
[2] L.L. Anderson, Status of dosimetry for 252Cf medical neutron sources, Phys. Med, 18 (1973) 779-799.
[3] J.G. Wierzbicki, M.J. Rivard, W. Roberts, Physics and dosimetry of clinical 252Cf sources, Kluwer Academic, 29 (1997) 25-53.
[4] R.C. Martin, R.R. Laxson, J.H. Miller, J.G. Wierzbicki, M.J. Rivard, D.L. Marsh, Development of high-activity 252Cf sources for neutron brachytherapy, Appl. Radiat. Isot, 48 (1997) 1567-1570.
[5] J. Ghassoun, D. Mostacci, V. Molinari, A.J. ehouani, Detailed dose distribution prediction of Cf-252 brachytherapy source with boron loading dose enhancement, Applied Radiation and Isotopes, 68 (2010) 265-270.
[6] M.J. Rivard, Neutron dosimetry for a general 252Cf brachytherapy source, Medical Physics, 27 (2000) 2803-2815.
[7] L. Paredes, J. Azorin, M. Balcazar, J.L. Francois, Neutrons absorbed dose rate calculations for interstitial brachytherapy with 252Cf sources, Nuclear Instruments and Methods in Physics Research A, 580 (2007) 582–585.
[8] R. Nath, L.L. Anderson, G. Luxton, K.A. Weaver, J.F. Williamson, A.S. Meigooni, Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group, No. 43, Med. Phys, 22 (1995) 209-234.
[9] M.J. Rivard, J.G. Wierzbicki, F. Van den Heuvel, R.C. Martin, R.R. McMahon, Clinical brachytherapy with neutron emitting 252Cf sources and adherence to AAPM TG-43 dosimetry protocol, Med. Phys, 26 (1999) 87–96.
[10] M.J. Rivard, B.M. Coursey, L.A. Dewerd, W.F. Hanson, M. Saiful Huq, G.S. Ibbott, Update of AAPM Task Group Report No. 43: A revised AAPM protocol for brachytherapy dose calculations, Med Phys, 31 (2004) 633-674.
[11] M.J. Rivard, J.K. Sganga, F. Errico, J.S. Tsai, K. Ulin, M.J. Engler, Calculated neutron air kerma strength conversion factors for a generically encapsulated Cf-252 brachytherapy source, Nuclear Instruments and Methods in Physics Research A, 476 (2002) 119–122.
[12] G. Raisali, F. Mokhles Gerami, R. Khodadadi, B. Piroozfar, Determination of Dosimetery Parameters for Low Energy Brachytherapy Sources Based on TG-43U1 Protocol Using Different MCNP Tallies, Journal of Nuclear Science and Technology, 35 (1384) 29-36.
[13] LS. (Ed.)Walter, LANL(Los Alamos National Laboratory) Monte Carlo N-Particle transport code system for multiparticle and high energy applications. Version 270, LA-CP-02-408, Los Alamos National Laboratory (2002).
[14] M.B. Chadwick, H.H. Barschall, R.S. Caswell, A consistent set of neutron kerma coefficients from thermal to 150MeV for biologically important materials, Med. Phys, 26 (1999) 974-991.
[15] R.D. Colvett, H.H. Rossi, V. Krishnaswamy, Dose distributions around a californium-252 needle, Phys. Med. Biol, 17 (1972) 356-364.
[16] J.C. Yanch, R.G. Zamenhof, Dosimetry of 252Cf source for neutron radio therapy with and without augmentation of boron neutron capture therapy. Radiat. Res, 131 (1992) 249–256.
Keywords