In cooperation with the Iranian Nuclear Society

Low Energy Neutrino Generator on the Basis of FLUKA

Document Type : Research Paper

Authors

1 Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI

2 Nuclear Engineering Faculty, Amirkabir University Tehran – Iran

3 Radiation Application Department, Nuclear Engineering Faculty, Shahid Beheshti University Tehran – Iran

Abstract
Detection of low-energy anti-neutrino has certain applications in science and technology. Recently, the FLUKA collaboration, so-called the PEANUT model, has been developed which is capable of simulating all neutrino flavors from the threshold up to TeV. Here, the FLUKA code will be demonstrated as a neutrino event generator, upon emphasizing the interaction of low-energy electron anti-neutrino (i.e., those coming from nuclear reactors). The results which are reported in this paper show the applicability and capability of the code to be applied for such purposes. An important feature of the FLUKA code is its potential to track several types of particles (here most of them are considered as secondaries), and also the complicated geometries which imply that the present code is a powerful tool kit for neutrino engineering applications.

Highlights

[1]  M. Battaglieri, R. DeVita, G. Firpo, P. Neuhold, M. Osipenko, D. Piombo, G. Ricco, M.I. Ripan, M. Taiuti, An anti–neutrino detector to monitor nuclear reactor’s power and fuel composition, Nuclear Instruments and Methods A, 617 (2010) 209-213.

 [2] Y. Kuroda, S. Oguri, Y. Kato, R. Nakata, Y. Inoue, C. Ito, M. Minowa, A mobile antineutrino detector with plastic scintillators, Nuclear Instruments and Methods A, 690 (2012) 41-47.

 [3] C. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, S. Dytman, H. Gallagher, P. Guzowski, R. Hatcher, P. Kehayias, The GENIE neutrino Monte Carlo generator, Nuclear Instruments and Methods A, 614 (2010) 87-104.

 [4] O. Lalakulich, K. Gallmeister, U. Mosel, Neutrino nucleus reactions within the GiBUU model, Journal of Physics: Conference Series, 408 (2013) 012053.

 [5] D. Casper, The nuance Neutrino Physics Simulation and the Future, Nuclear Physics B (Proc. Suppl.), 112 (2002) 161-170.

 [6] H. Gallagher, The NEUGEN neutrino event generator, Nuclear Physics B (Proc. Suppl.), 112 (2002) 188-194.

[7] H. Gallagher, Neutrino event generator review, Proceedings of Science, The 2011 Europhysics Conference on High Energy Physics-HEP (2011) 084-088.

 [8] G. Battistoni, R.P. Sala, M. Lantz, A. Ferrari, G. Smirnov, Neutrino intractions with FLUKA, Conf. Proc. Neutrino Intractions: From Theory to Monte Carlo Simulation, Poland, (2009).

 [9] G. Battistoni, A. Ferrari, M. Lantz, R.P. Sala, G. Smirnov, A neutrino-nucleon interaction generator for the FLUKA Monte Carlo code, in: Cerutti F, Ferrari A. (Eds.) 12th International Conference on Nuclear Reaction Mechanism, CERN, Varenna (Italy), Villa Monastero, (2009).

[10] J.A. Formaggio, G.P. Zeller, From eV to EeV: Neutrino cross sections across energy scales, Review of Modern Physics, 84 (2012) 1307-1341.

 [11] P. Vogel, J. Beacom, Angular distribution of neutron inverse beta decay, νe+p→e++n, Physical Review D, 60 (1999) 053003-1.

 [12] G.F.J. Hernández, Some aspects of neutrino phenomenology, Instituto de Física Teórica, MSc. Thesis (2011).

Keywords


[1]  M. Battaglieri, R. DeVita, G. Firpo, P. Neuhold, M. Osipenko, D. Piombo, G. Ricco, M.I. Ripan, M. Taiuti, An anti–neutrino detector to monitor nuclear reactor’s power and fuel composition, Nuclear Instruments and Methods A, 617 (2010) 209-213.
 [2] Y. Kuroda, S. Oguri, Y. Kato, R. Nakata, Y. Inoue, C. Ito, M. Minowa, A mobile antineutrino detector with plastic scintillators, Nuclear Instruments and Methods A, 690 (2012) 41-47.
 [3] C. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, S. Dytman, H. Gallagher, P. Guzowski, R. Hatcher, P. Kehayias, The GENIE neutrino Monte Carlo generator, Nuclear Instruments and Methods A, 614 (2010) 87-104.
 [4] O. Lalakulich, K. Gallmeister, U. Mosel, Neutrino nucleus reactions within the GiBUU model, Journal of Physics: Conference Series, 408 (2013) 012053.
 [5] D. Casper, The nuance Neutrino Physics Simulation and the Future, Nuclear Physics B (Proc. Suppl.), 112 (2002) 161-170.
 [6] H. Gallagher, The NEUGEN neutrino event generator, Nuclear Physics B (Proc. Suppl.), 112 (2002) 188-194.
[7] H. Gallagher, Neutrino event generator review, Proceedings of Science, The 2011 Europhysics Conference on High Energy Physics-HEP (2011) 084-088.
 [8] G. Battistoni, R.P. Sala, M. Lantz, A. Ferrari, G. Smirnov, Neutrino intractions with FLUKA, Conf. Proc. Neutrino Intractions: From Theory to Monte Carlo Simulation, Poland, (2009).
 [9] G. Battistoni, A. Ferrari, M. Lantz, R.P. Sala, G. Smirnov, A neutrino-nucleon interaction generator for the FLUKA Monte Carlo code, in: Cerutti F, Ferrari A. (Eds.) 12th International Conference on Nuclear Reaction Mechanism, CERN, Varenna (Italy), Villa Monastero, (2009).
[10] J.A. Formaggio, G.P. Zeller, From eV to EeV: Neutrino cross sections across energy scales, Review of Modern Physics, 84 (2012) 1307-1341.
 [11] P. Vogel, J. Beacom, Angular distribution of neutron inverse beta decay, νe+p→e++n, Physical Review D, 60 (1999) 053003-1.
 [12] G.F.J. Hernández, Some aspects of neutrino phenomenology, Instituto de Física Teórica, MSc. Thesis (2011).