Document Type : Research Paper
Authors
1 Nuclear Reactor and Safety Research School, Nuclear Science and Technology Research Institute, AEOI
2 Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI
3 Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, AEOI
Highlights
[1] J. Rest, An alternative explanation for evidence that xenon depletion, pore formation, and grain subdivision begin at different local burnups, J. Nucl. Mater., 277 (2000) 231-238.
[2] J. Rest, A model for the effect of the progression of irradiation-induced recrystallization from initiation to completion on swelling of UO2 and U–10Mo nuclear fuels, J. Nucl. Mater., 346 (2005) 226–232.
[3] J. Rest, Derivation of analytical expressions for the network dislocation density, change in lattice parameter, and for the recrystallized grain size in nuclear fuels, J. Nucl. Mater., 349 (2006) 150–159.
[4] J. Rest, G. Kagana, A Physical description of fission product behavior in fuels for advanced power reactors, ANL-07/24, Argonne National Laboratory, ( 2007) 21-26.
[5] J. Rest, editor: Rudy J.M. Konings, Comp. Nucl. Mater., Vol. 3, Elsevier (2012) 579-627.
[6] A.L. Loeb, Thermal Conductivity: VIII, A theory of thermal conductivity of porous materials, J. Amer. Ceram. Soc, 37 (1954) 96-99.
[7] H. Kampf, G. Karsten, Effects of different types of void volume on the radial temperature distribution of fuel pins, Nucl. Appl. Technol, 9 (1970) 288-300.
[8] J. Rest, The DART Dispersion Analysis Research Tool: A Mechanistic Model for Predicting Fission-Product-Induced Swelling of Aluminum Dispersion Fuels, AN L-95/36, (1995).
[9] M. Owaki, N. Ikatsu, K. Ohira, N. Itagaki, Development of a fuel rod thermal-mechanical analysis code for high burn up, IAEA-TECDOC-1233, Session 6 (2000) 375-385.
[10] B.H. LEE, Y.H. KOO, D.S. SOHN, Rim characteristics and their effects on the thermal conductivity in high burnup UO2 fuel, J. Nucl. Sci. Tech, 38 (2001) 45-52.
[11] M. Lemes, A. Soba, A. Denis, An empirical formulation to describe the evolution of the high burnup structure, J. Nucl. Engin. Tech, 456 (2015) 174-181.
[12] J. Spino, A.D. Stalios, H. Santa Cruz, D. Baron, Stereological evolution of the rim structure in PWR-fuels at prolonged irradiation: Dependencies with burnup and temperature, J. Nucl. Mater., 354 (2006) 66-84.
[13] J. Spino, J. Rest, W. Goll, C.T. Walker, Matrix swelling rate and cavity volume balance of UO2 fuels at high burnup, J. Nucl. Mater., 346 (2005) 131-144.
[14] W. Wiesenack, Assessment of UO2 conductivity degradation based on in-pile temperature data, Proc. Int. Topi. Mtg. LWR fuel performance, Portland, Oregon, (1997) 507.
[15] D.R. Olander, Fundamental aspects of nuclear fuel elements, Technical Information Center & Energy Research and Development Administration (publisher), USA, (1976) 193-194.
[16] J. Rest, A model for the influence of microstructure, precipitate pinning and fission gas behavior on irradiation-induced recrystal-lization of nuclear fuels, J. Nucl. Mater., 346 (2004) 175-184.
[17] Y. Cui, S. Ding, Z. Chen, Y. Huo, Modifications and applications of the mechanistic gaseous swelling model for UMo fuel, J. Nucl. Mater., 457 (2015) 157-164.
[18] C. Ronchi, M. Sheindlin, D. Staicu, M. Kinoshita, Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWd/t, J. Nucl. Mater., 327 (2004) 58-76.
[19] DL. Hagrman, GA. Reymann, MATPRO version 11-A, Handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, 3rd edn. TREENUREC-1280, Adv. Inorg. Chem, (1979).
[20] J. Rest, A microstructurally-based model for the evolution of irradiation-induced recrystallization in U-Mo monolithic and Al-dispersion fuels, RERTR-2004 International Meeting on Reduced Enrichment for Research and Test Reactors, USA, Argonne National Laboratory, (2004) 17.
[21] C.T. Walker, D. Staicu, M. Sheindlin, D. Papaioannou, W. Goll, F. Sontheimer, On the thermal conductivity of UO2 nuclear fuel at a high burnup of around 100 MWd/kgHM, J. Nucl. Mater., 350 (2006) 19-39.
[22] M.L. Bleiberg, R.M. Berman, B. Lustman, Effects of high burn-up on oxide ceramic fuels, in symp. on radiation damage in solid and reactor materials, Proc. Series, IAEA, Venice, (1963) 319.
[23] C.B. Lee, J.G. Bang, D.H. Kim, Y.H. Jung, Development of irradiated UO2 thermal conductivity model, IAEA-TECDOC-1233, (2000) 363-371.
[24] R. Brandt, J. Neuer, Thermal conductivity and thermal radiation properties of UO2, J. Non-Equilib. Thermodyn., 1 (1976) 3-23.
[25] B. Roostaii, H. Kazeminejad, S.Khakshournia, Influence of porosity formation on irradiated UO2 fuel thermal conductivity at high burnup, J. Nucl. Mater., 479 (2016) 374-381.
Keywords