In cooperation with the Iranian Nuclear Society

The Study of Scattering and Transport of Electron Beam Into Dense Fuel for Fast-Shock Ignition Approach

Document Type : Research Paper

Authors

Abstract
The stopping power, penetration and scattering of high energy electrons with different energy distribution functions into dense fuel and hot-spot (fuel core) have been considered for a fast-shock ignition scenario. The analytical calculations indicate that fast electrons with two-temperature energy distribution function penetrate more into the dense fuel, in comparison with the monoenergetic and exponential function, where it is consistent with the MCNPX simulation results. Furthermore, the scattering of energetic electron beams toward the outer surface of the fuel for five various fuel density and two fast ignitor wavelengths of 0.53 and 0.35 micron have been investigated. The results show that for the fuel mass smaller than  2 mg, the scattering of electrons reduce for the electrons with smaller energies and fast ignitor of smaller  wavelengths. Meanwhile, for the electrons with energy of the order ~3.5 MeV, two-temperature and monoenergetic energy distribution function deliver the highest and lowest energy to the main fuel and the central hot-spot, respectively.

Highlights

[1] S.A. Ghasemi, A.H. Farahbod, S. Sobhanian, Analytical model for fast-shock ignition, AIP Adv., 4, 077130 (2014).

 

[2] A.H. Farahbod, S.A. Ghasemi, M.J. Jafari, S. Rezaei, S. Sobhanian, Improvement of non-isobaric model for shock ignition,  Eur. Phys. J. D., 68, 314 (2014).

 

[3] A.H. Farahbod, S.A. Ghasemi, Fast-Shock Ignition: A new concept to Inertial confinement fusion, Iranian J. Phys. Res., 12, 4 (2013).

 

[4] S.A. Ghasemi, A.H. Farahbod, The Role of fast ignitor in fast-shock ignition concept, Iranian J. Phys. Res., 13, 4 (2013).

 

[5] S.A. Ghasemi, A.H. Farahbod, Fast-Shock Ignition: A New Concept to Inertial Confinement Fusion, Bull. Am. Phys. Soc., 58, 308 (2013).

 

[6] S.A. Ghasemi, A.H. Farahbod, Electron Energy Deposition in Fast-Shock Ignition, Bull. Am. Phys. Soc., 59, 1 (2014).

 

[7] S. Atzeni, A. Schiavi, J.R. Davies, Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition,  Plasma Phys. Control. Fusion, 51, 015016 (2009).

 

[8] S. Atzeni, A. Schiavi, J.R. Davies, Stopping and scattering of relativistic electrons in high density plasmas for fast ignition studies, 35th EPS Conference on Plasma Phys. Hersonissos, 9-13 June  ECA. 32D, P-5.106 (2018).

 

[9] A.A. Solodov, R. Betti, Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets, Phys. Plasmas 15, 042707 (2008).

[10] C. Deutsch, H. Furukava, K. Mima, K. Nishihara, Interaction physics of the fast ignitor concept, Phys. Rev. Lett 77, 2483 (1996).

 

[11] A.A. Solodov, R. Betti, J.A. Delettrez, C. Zhou, Stopping of Fast Electrons in Dense Hydrogenic Plasmas, Phys. Plasmas 14, 062701 (2007).

 

[12] S. Atzeni, M. Tabak, Overview of ignition conditions and gain curves for the fast ignitor, Plasma Phys. Controlled Fusion 47, B769 (2005).

 

[13] C. Bellei, L. Divol, A.J. Kemp, M.H. Key, D.J. Larson, D.J. Strozzi, M.M. Marinak, M. Tabak, P.K. Patel, Phys. Plasmas 20, 052704 (2013).

 

[14] C.K. Li, R.D. Petrasso, Stopping of directed energetic electrons in high-temperature hydro-genic plasmas, Phys. Review E 70, 067401 (2004).

 

[15] C.K. Li, R.D. Petrasso, Energy deposition of MeV electrons in compressed targets of fast-ignition inertial confinement fusiona…C., Phys. Plasmas 13, 056314 (2006).

 

[16] S. Chawla, M.S. Wei, R. Mishra, K.U. Akli, C.D. Chen, H.S. McLean, A. Morace, P.K. Patel, H. Sawada, Y. Sentoku, R.B. Stephens, F.N. Beg, Effect of target material on fast-electron transport and resistive collimation, Phys. Rev. Lett. 110, 025001 (2013).

 

[17] Boyuan Li, Chao Tian, Zhimeng Zhang, Feng Zhang, Lianqiang Shan, Bo Zhang, Weimin Zhou, Baohan ZhangYuqiu Gu, Effect of laser wavelength and intensity on the divergence of hot electrons in fast ignition, Phys. Plasmas 23, 093121 (2016).

Keywords


[1] S.A. Ghasemi, A.H. Farahbod, S. Sobhanian, Analytical model for fast-shock ignition, AIP Adv., 4, 077130 (2014).
 
[2] A.H. Farahbod, S.A. Ghasemi, M.J. Jafari, S. Rezaei, S. Sobhanian, Improvement of non-isobaric model for shock ignition,  Eur. Phys. J. D., 68, 314 (2014).
 
[3] A.H. Farahbod, S.A. Ghasemi, Fast-Shock Ignition: A new concept to Inertial confinement fusion, Iranian J. Phys. Res., 12, 4 (2013).
 
[4] S.A. Ghasemi, A.H. Farahbod, The Role of fast ignitor in fast-shock ignition concept, Iranian J. Phys. Res., 13, 4 (2013).
 
[5] S.A. Ghasemi, A.H. Farahbod, Fast-Shock Ignition: A New Concept to Inertial Confinement Fusion, Bull. Am. Phys. Soc., 58, 308 (2013).
 
[6] S.A. Ghasemi, A.H. Farahbod, Electron Energy Deposition in Fast-Shock Ignition, Bull. Am. Phys. Soc., 59, 1 (2014).
 
[7] S. Atzeni, A. Schiavi, J.R. Davies, Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition,  Plasma Phys. Control. Fusion, 51, 015016 (2009).
 
[8] S. Atzeni, A. Schiavi, J.R. Davies, Stopping and scattering of relativistic electrons in high density plasmas for fast ignition studies, 35th EPS Conference on Plasma Phys. Hersonissos, 9-13 June  ECA. 32D, P-5.106 (2018).
 
[9] A.A. Solodov, R. Betti, Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets, Phys. Plasmas 15, 042707 (2008).
[10] C. Deutsch, H. Furukava, K. Mima, K. Nishihara, Interaction physics of the fast ignitor concept, Phys. Rev. Lett 77, 2483 (1996).
 
[11] A.A. Solodov, R. Betti, J.A. Delettrez, C. Zhou, Stopping of Fast Electrons in Dense Hydrogenic Plasmas, Phys. Plasmas 14, 062701 (2007).
 
[12] S. Atzeni, M. Tabak, Overview of ignition conditions and gain curves for the fast ignitor, Plasma Phys. Controlled Fusion 47, B769 (2005).
 
[13] C. Bellei, L. Divol, A.J. Kemp, M.H. Key, D.J. Larson, D.J. Strozzi, M.M. Marinak, M. Tabak, P.K. Patel, Phys. Plasmas 20, 052704 (2013).
 
[14] C.K. Li, R.D. Petrasso, Stopping of directed energetic electrons in high-temperature hydro-genic plasmas, Phys. Review E 70, 067401 (2004).
 
[15] C.K. Li, R.D. Petrasso, Energy deposition of MeV electrons in compressed targets of fast-ignition inertial confinement fusiona…C., Phys. Plasmas 13, 056314 (2006).
 
[16] S. Chawla, M.S. Wei, R. Mishra, K.U. Akli, C.D. Chen, H.S. McLean, A. Morace, P.K. Patel, H. Sawada, Y. Sentoku, R.B. Stephens, F.N. Beg, Effect of target material on fast-electron transport and resistive collimation, Phys. Rev. Lett. 110, 025001 (2013).
 
[17] Boyuan Li, Chao Tian, Zhimeng Zhang, Feng Zhang, Lianqiang Shan, Bo Zhang, Weimin Zhou, Baohan ZhangYuqiu Gu, Effect of laser wavelength and intensity on the divergence of hot electrons in fast ignition, Phys. Plasmas 23, 093121 (2016).