Document Type : Research Paper
Authors
null
Highlights
[1] J. Deacon, M.J. Peckham, G.G. Steel, The radioresponsiveness of human tumor and the initial slope of the cell survival curve, Radiotherapy and Oncology 2, 4 (1984) 317-323.
[2] R.K. Hobbie, B.J. Roth, Intermediate Physics for Medicine and Biology, 4th ed., New York: Springer Science & Business Media., (2007) 492-4.
[3] H. Ranjbar, A. Bahrami-Samani, M.R. Yazdani, M. Ghannadi-Maragheh, Determination of human absorbed dose of cocktail of 153Sm/177Lu-EDTMP, based on biodistribution data in rats, Journal of Radioanalytical and Nuclear Chemistry, 307, 2 (2016) 1439-1444.
[4] H. Ranjbar, M. Shamsaei, M.R. Ghasemi, Investigation of the dose enhancement factor of high intensity low mono-energetic X-ray radiation with labeled tissues by gold nanoparticles, Nukleonika, 55 (2010) 307-312.
[5] L.F. Mausner, S.C. Srivastava, Selection of radionuclides for radioimmunotherapy, Medical physics., 20, 2 (1993) 503-509.
[6] J. Zhang, H. Hu, S. Liang, J. Yin, X. Hui, S. Hu, M. He, J. Wang, B. Wang, Y. Nie, K. Wu, Targeted radiotherapy with tumor vascular homing trimeric GEBP11 peptide evaluated by multimodality imaging for gastric cancer, Journal of controlled release., 172, 1 (2013) 322-329.
7. H. Ranjbar, M. Ghannadi-Maragheh, A. Bahrami-Samani, D. Beiki, Dosimetric evaluation of 153Sm-EDTMP, 177Lu-EDTMP and 166Ho-EDTMP for systemic radiation therapy: Influence of type and energy of radiation and half life of radionuclides, Radiation Physics and Chemistry, 108 (2015) 60-64.
[8] H. Ranjbar, A. Bahrami-Samani, D. Beiki, S. Shirvani-Arani, M. Ghannadi-Maragheh, Evaluation of 153Sm/177Lu-EDTMP mixture in wild-type rodents as a novel combined palliative treatment of bone pain agent, Journal of Radioanalytical and Nuclear Chemistry, 303, 1 (2015) 71-79.
[9] A. Lechner, M. Blaickner, S. Gianolini, K. Poljanc, H. Aiginger, D. Georg, Targeted radionuclide therapy: theoretical study of the relationship between tumour control probability and tumour radius for a 32P/33P radionuclide cocktail, Physics in Medicine and Biology, 53 (2008) 1961.
[10] S. Walrand, F.X. Hanin, S. Pauwels, F. Jamar, Tumour control probability derived from dose distribution in homogeneous and heterogeneous models: assuming similar pharmacokinetics, 125Sn–177Lu is superior to 90Y–177Lu in peptide receptor radiotherapy, Physics in Medicine & Biology, 57, 13 (2012) 4263.
[11] M. Tesson, R. Mairs, K. Maresca, J. Joyal, B. John, Enhancement of prostate-targeted radiotherapy using [131I] MIP-1095 in combination with radiosensitizing chemotherapeutic drugs, Journal of Nuclear Medicine, 54, 2 (2013) 119-119.
12. J.S. Wilson, J.E. Gains, V. Moroz, K. Wheatley, A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma, European journal of cancer., 50, 4 (2014) 801-815.
[13] KCJM Kraal, EC Van Dalen, GAM Tytgat, BL Van Eck‐Smit, HN Caron, Iodine-131-meta-iodobenzylguanidine therapy for patients with high-risk neuroblastoma, Cochrane Database of Systematic Reviews., 2 (2013).
[14] S. Mittal, M. Bhadwal, T. Das, H.D. Sarma, R. Chakravarty, Synthesis and Biological Evaluation of 90Y-Labeled Porphyrin-DOTA Conjugate: A Potential Molecule for Targeted Tumor Therapy, Cancer Biotherapy and Radiopharmaceuticals, 28, 9 (2013) 651-656.
[15] L. Bodei, M. Cremonesi, G. Paganelli, Yttrium-Based Therapy for Neuroendocrine Tumors. PET clinics 9, 1 (2014) 71-82.
[16] S.A. Gulec, T.C. Barot, Y-90 Radiomicrosphere Therapy of Colorectal Cancer: Liver Metastases. In Image-Guided Cancer Therapy, Springer, New York, NY, (2013) 441-454.
[17] K. Scheidhauer, I. Wolf, H.J. Baumgartl, C. Von Schilling, B. Schmidt, G. Reidel, C. Peschel, M. Schwaiger, Biodistribution and kinetics of 131I-labelled anti-CD20 MAB IDEC-C2B8 (rituximab) in relapsed non-Hodgkin’s lymphoma, European journal of nuclear medicine and molecular imaging, 29, 10 (2002) 1276-1282.
[18] G.W. Kang, H.J. Kang, D.Y. Shin, H.R. Gu, H.S. Choi, S.M. Lim, Radioimmunotherapy with 131I-Rituximab in a Patient with Diffuse Large B-Cell Lymphoma Relapsed After Treatment with 90Y-Ibritumomab Tiuxetan, Nuclear medicine and molecular imaging, 47, 4 (2013) 281-284.
[19] C. Vaklavas, R.F. Meredith, S. Shen, S.J. Knox, I.N. Micallef, J.J. Shah, A.F. LoBuglio, A. Forero-Torres, Phase I Study of a Modified Regimen of 90Yttrium–Ibritumomab Tiuxetan for Relapsed or Refractory Follicular or Transformed CD20+Non-Hodgkin Lymphoma. Cancer Biotherapy and Radiopharmaceuticals, 28, 5 (2013) 370-379.
[20] EH. Porter, The statistics of dose-cure relationships for irradiated tumours, The British journal of radiology, 53, 627 (1980) 210-227.
[21] J. Deacon, M.J. Peckham, G.C. Steel, The radioresponsiveness of human tumor and the initial slope of the cell survival curve, Radiotherapy and Oncology, 2, 4 (1984) 317-323.
[22] B. Fertil, E.P. Malaise, Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves, International Journal of Radiation Oncology Biology Physics, 11, 9 (1985) 1699-1707.
[23] ICRU. Photon, electron, proton and neutron interaction data for body tissues, ICRU Report, 46, Bethesda, MD:ICRU; (1992).
Keywords