Document Type : Research Paper
Authors
Highlights
[1] A.S. Nagy, L. Matel, J. Lesny, Geochemistry and Determination Possibilities of Uranium in natural Waters, Acta Technica Jaurinensis, 1, 2 (2009) 19-34.
[2] B. Khadro, N. Jafferzic-Renult, A miniaturized system for ultratrace uranium analysis in waters, Procedia Engineering, 5 (2010) 1212-1215.
[3] U. Farooq, J.A. Kozinski, M.A. Khan, M. Athar, Biosorption of heavy metal ions using wheat based bio sorbents A review, Bio resource Technology, 101 (2001) 5043–5053.
[4] H. Yamashita, Y. Ozawa, F. Nakajima, T. Murata, The Collection of Uranium from Sea Water with Hydrous Metal Oxide. II. The Mechanism of Uranium Adsorption on Hydrous Titanium (IV) Oxide, Bull. Chem. Soc. Jpn., 53 (1980) 1-5.
[5] H.J. Schenk, L. Astheimer, E.G. Witte, K. Schwochau, Development of sorbers for the recovery of uranium from seawater Assessment of key parameters and screening studies of sorber materials, Sep. Sci. Technol., 17 (1982) 1293-1308.
[6] P.A. Kavaklı, N. Seko, M. Tamada, O. Güven, Radiation-induced graft polymerization of glycidyl methacrylate onto PE/PP nonwoven fabric and its modification toward enhanced amidoximation, J. Appl. Polym. Sci., 105 (2007) 1551-1558.
[7] P.A. Kavaklı, N. Seko, M. Tamada, O. Güven, Adsorption Efficiency of a New Adsorbent Towards Uranium and Vanadium Ions at Low Concentrations, Sep. Sci. Tech., 39, 7 (2004) 1631–1643.
[8] I.H. Park, J.M. Suh, Preparation and uranyl ion adsorptivity of macroreticular chelating resins containing a pair of neighboring amidoxime groups in a monomeric styrene unit, Makromol. Chem., 239 (1996) 121–132.
[9] L. Rao, Recent International R&D activities in the extraction of uranium from seawater, Lawrence Berkeley National Laboratory, (2011) 1-20.
[10] S. Das, Y. Oyola, R.T. Mayes, C.J. Janke, L.J. Kuo, Extracting Uranium from Seawater: Promising AI Series Adsorbents, Industrial & Engineering Chemistry Research, 55, 15 (2016) 4103–4109.
[11] S. Das, Y. Oyola, R.T. Mayes, C.J. Janke, L.J. Kuo, Extracting Uranium from Seawater: Promising AI Series Adsorbents, Industrial & Engineering Chemistry Research, 55, 15 (2016) 4110–4117.
[12] N. Horzum, T. Shahwan, O. Parlak, M. Demir, Synthesis of amidoximated polyacrylonitrile fibers and its application for sorption of aqueous uranyl ions under continuous flow, Chemical Engineering Journal, 213 (2012) 41–49.
[13] S. Padron, Fuentes, D. Caruntu, K. Lozano, Experimental study of nanofiber production through forcespinning, J. Appl. Phys., 113 (2013) 024318.
[14] M.R. Badrossamay, H.A. McIlwee, J.A. Goss, K.K. Parker, Nanofiber assembly by rotary jet-spinning, Nano Lett., 10 (2010) 2257–2261.
[15] K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. Hoyos, H. Vasquez, K. Lozano, Electrospinning to Forcespinning™, Materials Today, 13, 11 (2010) 12–14.
[16] A. Zhang, T. Asakura, G. Uchiyama, The adsorption mechaism of uranium (VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group, React. Funct. Polym., 57 (2003) 67-76.
[17] H. Pan, W. Liao, Ch. Wai, Y. Oyola, Ch. Janke, G. Tian, L. Rao, Carbonate–H2O2 leaching for sequestering uranium from seawater, Dalton Trans., 43 (2014) 10713-10718.
[18] Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy, Oak Ridge National Laboratory, 53 (2013).
[19] R. Djogic, L. Sipos, M. Branica, Characterization of uranium(V1) in seawater, Limnol. Oceanogr., 31, 5 (1986) 1122-l131.
[20] A. Krestou, D. Panias, Uranium (VI) speciation diagrams in the UO22+/CO32-/H2O system at 25̊C, Eur. J. Miner. Process. Environ. Prot., 4, 2 (1004) 303-0868.