1. A.B. Duncan, G.P. Peterson, Review of Micro scale Heat Transfer, Appl. Mech. Rev, 9 (1994) 397-428.
2. S.U.S. Chio, Enhancing thermal conductivity of fluid with nanoparticles, Developments and applications of non-newtonian flow, D.A. Siginer and H.P. Wang eds., FED, V 231/MD, 66 (1995) 99.
3. S.M.S. Murshed, K.C. Leong, C. Yang, Enhanced thermal conductivity of TiO2. Water basednanofluids, International Journal of Thermal Sciences, 44 (2005) 367-373.
4. W. Yu, H. Xie, L. Chen, Y. Li, Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles, Powder Technology, 197 (3) (2010) 218–221.
5. W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nano fluids a renovated Hamilton-Crosser model, Journal of Nanoparticle Research, 6 (2004) 355-361.
6. Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21 (2000) 58-64.
7. S. ZeinaliHeris, S.Gh. Etemad, M. Nasr Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, Int. J. Heat and Mass Transfer, 33 (2006) 529-535.
8. S.M. Fotukian, M. Nasr Esfahany, Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube, Int. Comm. Heat and Mass Transfer, 37 (2009) 214-219.
9. I.C. Bang, S.H. Chang, Boiling heat transfer performance and phenamena of AL2O3-water nanofluid from a plain surface in a pool, Int. J. Heat Mass Transfer, 48 (2005) 2407-2419.
10. Y. Xuan, W. Roetzel, Conception for heat transfer correlation of nanofluid, Int. J. Heat Mass Transfer, 43 (2000) 3701-3707.
11. S. Mirmasoumi, A. Behzadmehr Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizantal tube, Int. J. Heat Fluid Flow, 29 (2008) 557-556.
12. N. Masoumi, N. Sohrabi, A. Behzadmehr, A new model for calculating the effective viscosity of nanofluids, Journal of Physics, D: Applied Physics, 42 (2009) 1-6.
13. W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nano fluids a renovated Hamilton-Crosser model, Journal of Nanoparticle Research, 6 (2004) 355-361.
14. Clement Kleinstreuer, Yu Feng, Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review, Kleinstreuer and FengNanoscale Research Letters (2011) 229.
15. H.E. Patel, T. Sundararajan, T. Pradeep, A micro-convection model for thermal conductivity of nanofuids, Indian Academy of Sciences, 65 (2005) 863-869.
16. D. Weerapun, W. Somchai, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, International Journal of Experimental Thermal and Fluid Science, 33 (2009) 706-714.
17. S.M.S. Murshed, K.C. Leong, C. Yang, Investigatiton of thermal conductivity and viscosity of nano fluid, International Journal of Thermal Science, 47 (2008) 560-568.
18. MadhursreeKole, Dey, T.K., Effect of aggregation on the viscosity of cooper oxide-gear oil naonfluids, International Journal of Thermal Science, 50 (2011) 1741-1747.
19. M.M. EL-Wakil, Nuclear Heat Transport, The American Nuclear Society La Grange Park, ILLinois (1993).