In cooperation with the Iranian Nuclear Society

A New Method to Measure the Electron Beam Energy Spectrum

Document Type : Research Paper

Authors

Abstract
An innovative method has been used to calculate electron beam energy spectrum using depth-dose curve. The depth-dose distributions of the electron beam with different primary energies emerging from the electron accelerator were measured in water phantom after passing through a lead scatterer plate, using a computer-controlled plane-parallel chamber dosimetry system. The obtained depth-dose curves of the electrons were considered as the primary data to calculate the electron beam energy spectrum. Considering that the empirical depth-dose curve is a combination of the single-energy electron depth-dose curves, the electron energy spectrums were calculated via mathematical methods based on the superposition principle. The depth-dose curves for single-energy electrons were also calculated using the EGS4 computer code. The results for the energies of the electron beams were found to be 8, 12, and 18MeV.

Highlights

  1. C.J. Karzmark, S. Nunan, E. Tanabe, Medical Electron Accelerators, McGraw-Hill, Inc., Health Professions Division, New York (1993).

 2.   D. Reistad, A. Brahme, The microtron, a new accelerator for radiation theraphy, (Abstract, 3rd Int Conf Med Phys.) Phys Med Biol, 17 (1972) 692.

 3.   F. Ziaie, Z. Zimek, S. Bulka, H. Afarideh, S.M. Hadji-Saeid, Calculated and measured dose distribution in electron and x-ray irradiated water phantom, Radiat. Chem. Phys. 63 (2002) 177-183.

 4.   F.M. Khan, K. Doppke, K.R. Hogstrom, Clinical electron-beam dosimetry, Report of AAPM Radiation Therapy Committee Task Group No.25. Med. Phys. (1991).

 5.   H. Svensson, G. Hettinger, Dosimetric measurements at the Nordic medical accelerators. I. Characteristics of the radiation beam, Acta Radiol. 10 (1971) 369.

 6.   F.H. Attix, W.C. Roesch, eds., Radiation Dosimetry, II. Academic Press, New York (1967).

 7.   F.M. Khan, Replacement correction (Prepl) for ion chamber dosimetry, Med phys. 18 (1991) 1244.

 8.   H.O. Wyckoff, F.H. Attix, Design of Free-air Ionization Chambers, Natinal Bureau of Standards Handbook No. 64. Washington, DC: U.S. Government printing Office (1957).

 9.   F.M. Khan, P.D. Higgins, Calculation of depth dose and dose per monitor unit for irregularly shaped electron fields: an addendum, Phys Med Biol. 44 (1999) 77-80.

 10.N. Tapley, Clinical Applications of the Electron Beam, John Wiley & sons (1976).

 11.C.J. Karzmark, C.S. Nunan, E. Tanabe, Medical electron accelerator, Mcgraw-Hill (1993).

Keywords


  1. C.J. Karzmark, S. Nunan, E. Tanabe, Medical Electron Accelerators, McGraw-Hill, Inc., Health Professions Division, New York (1993).

 2.   D. Reistad, A. Brahme, The microtron, a new accelerator for radiation theraphy, (Abstract, 3rd Int Conf Med Phys.) Phys Med Biol, 17 (1972) 692.

 3.   F. Ziaie, Z. Zimek, S. Bulka, H. Afarideh, S.M. Hadji-Saeid, Calculated and measured dose distribution in electron and x-ray irradiated water phantom, Radiat. Chem. Phys. 63 (2002) 177-183.

 4.   F.M. Khan, K. Doppke, K.R. Hogstrom, Clinical electron-beam dosimetry, Report of AAPM Radiation Therapy Committee Task Group No.25. Med. Phys. (1991).

 5.   H. Svensson, G. Hettinger, Dosimetric measurements at the Nordic medical accelerators. I. Characteristics of the radiation beam, Acta Radiol. 10 (1971) 369.

 6.   F.H. Attix, W.C. Roesch, eds., Radiation Dosimetry, II. Academic Press, New York (1967).

 7.   F.M. Khan, Replacement correction (Prepl) for ion chamber dosimetry, Med phys. 18 (1991) 1244.

 8.   H.O. Wyckoff, F.H. Attix, Design of Free-air Ionization Chambers, Natinal Bureau of Standards Handbook No. 64. Washington, DC: U.S. Government printing Office (1957).

 9.   F.M. Khan, P.D. Higgins, Calculation of depth dose and dose per monitor unit for irregularly shaped electron fields: an addendum, Phys Med Biol. 44 (1999) 77-80.

 10.N. Tapley, Clinical Applications of the Electron Beam, John Wiley & sons (1976).

 11.C.J. Karzmark, C.S. Nunan, E. Tanabe, Medical electron accelerator, Mcgraw-Hill (1993).